1.        Suppose you take a chessboard.

X

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then you delete two squares of the opposite color, for example the two squares marked X and Y above.  Can you cover the remaining 62 squares with 1x2 dominoes? Can you prove your answer?

 

2.       A “tetromino” consists of four squares glued together along edges.  There are five of them:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Can you cover a 5x4 rectangle using these?  Can you prove your answer.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

Another group of shapes are the 12 pentominoes.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

You can try this game:  Place any pentomino.  Then opponent takes a remaining pentomino and places it without overlapping.  Last player to move wins!  Try this using pencils and these diagrams.