- Q1. The following table gives a list of a few different relations on various sets. Which of the relations are transitive? reflexive? symmetric? equivalence? Mark an X in the column if that relation is of the type indicated.
- Q2. For those which are equivalence relations, give an example of an equivalence class (i.e., choose an element x of the set, and write a list of all the elements equivalent to x, or a formula for all the elements if this is an infinite set).
- Q3. For those which are equivalence relations, in the last column of the table, write down the number of equivalence classes (this could be infinite.) **Repeat:** Only answer the last column if you have an equiv. rel.

Note: While I'm not asking for proofs here, you should be prepared to give a clear mathematical argument why a box is checked or unchecked.

	Set	Relation	Trans- itive	Relex- ive	Sym- metric	Equival- ence	Classes – Use this space to make clear that you know what the equivalence classes are. Give enough examples to convince me that you know.
1	R	aRb					
2	Z	aRb					
3	R	aRb⇔⇒ a = b					
4	R	$aRb \iff a = b $					
5	R	aRb					
6	Z	aRb					
7	Z	aRb⇔a∣b					
8	Z\{0}	aRb					
9	R\{0}	$aRb \iff ab \text{ is } a$ square in R					

Each relation in this table is a relation on a given set, listed under "set".