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Chapter 1

Preliminaries

In this introductory chapter, we will introduce required notation and, at the
same time, review very briefly some set theory. Our discussion of set theory
will be strictly naive. (The interested reader may consult the bibliography
(see [St]) for a more axiomatic treatment.) We shall next introduce and prove
certain results from elementary number theory.

1.1 Sets and mappings

We begin our discussion with the concept of a set, the notion of which we will
assume is intuitively clear; although this is in actuality far from so and an
unrestricted use of the set concept has led to contradictions in mathematics.
It was for this reason that an axiomatic treatment became necessary.

In this discussion, we will usually designate sets by capital Roman letters
such as A, B, C, etc, and elements of sets by small Roman letters. We will
also indicate that an element a belongs to a set A by writing a ∈ A, while if
this is not the case, we write a /∈ A, read “a does not belong to the set A.”

If we have a collection of sets indexed by elements α belonging to a set Λ,
then this collection will be denoted by {Aα}α∈Λ. For example, if Λ = N, the
set of positive integers or natural numbers, we could write {Ai}i∈N, meaning
that we have a countable number of sets which are being considered. (Note,
in general, it is not necessary that Λ be even countable. The set of all real
numbers denoted by R is an example of an uncountable set as compared to
N, which is a countable set.)

Let {Aα}α∈Λ be a collection of sets. The union of these sets, denoted by
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8 CHAPTER 1. PRELIMINARIES

∪α∈ΛAα, is the set of all elements which belong to at least one of the Aα. In
case the index set Λ is equal to N or is finite, say is equal to {1, ..., n}, we
use the following notations: ∪∞

i=1Ai, ∪n
i=1Ai, respectively or

∪∞
i=1Ai = A1 ∪ A2 ∪ ... ∪ An ∪ ...,

∪,
i=1Ai = A1 ∪ A2 ∪ ... ∪ An.

Again let {Aα}α∈Λ be a collection of sets. The intersection of the sets,
denoted by ∩α∈ΛAα, is the set of all elements which belong to all the Aα.
Similar notations as for unions are adopted in the case of intersections when
the index set Λ is countable or finite.

Next let A and B be two sets. If every element of A is also an element
of B, one says that A is a subset of B, denoted A ⊂ B (or A ⊆ B). If
A ⊂ B and B ⊂ A, then the sets A and B are said to be equal, denoted
A = B. Finally, if A ⊂ B but A 6= B, then A is called a proper subset of
B, denoted A ( B.

If A and B are two sets, the cartesian product, A×B, is the set of all
ordered pairs (a, b) such that a ∈ A and b ∈ B. Here it is to be emphasized
that (a1, b1) = (a2, b2) if and only if a1 = a2 and b1 = b2. Similarly we
can define the cartesian product of any finite number of sets. For example,
Rn = R × ...R (n times), consists of ordered n-tuples (x1, ..., xn) where each
xi ∈ R, for 1 ≤ i ≤ n.

The set consisting of no elements at all is called the null set or empty
set and is designated by ∅. If A and B are two sets such that A ∩ B = ∅,
then A and B are called disjoint sets.

We next introduce a particularly useful notation which will be used
throughout: If A is a set, we denote by

{x ∈ A | P (x)}

the set of all elements x belonging to A for which the proposition P (x) is
true. For example, the set of even positive integers equals {x | x is even}.
In the way of notation and abbreviation, we shall also, sometimes, adopt the
following convention: If A is a finite set consisting of the elements x1, ..., xn,
one writes A = {x1, ..., xn}. In particular if A consists of just a single element
x, we write A = {x}. A similar notation is frequently adopted in the case
where A consists of a denumerable or countable number of elements. Finally,
we define the order of a finite set A, written |A| , to be the number of
elements in the set A. If A is not finite we write, |A| = ∞.
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We now turn to the next item of business involving sets, namely the
notion of a mapping between two sets. Let A and B be two sets. If for every
a ∈ A there is associated a unique b ∈ B, we say that there is a mapping
or function f from A into B and we write f(a) = b. Here A is called the
domain of f , B is the co-domain of f , and if b = f(a), then b is the image
of a under f . We denote this by

f : A→ B, or A
f→ B.

Let f be a mapping from A into B. If distinct elements of A have distinct
images in B under f , i.e., if a1, a2 ∈ A and a1 6= a2 implies f(a1) 6= f(a2),
then f is called a one-to-one (1-1) (or injective) mapping. Put another
way, f is 1-1 if and only if f(a1) = f(a2) implies a1 = a2. If for every b ∈ B,
there is an element a ∈ A such that f(a) = b, then the mapping f is said to
be onto B.

Again, let f : A→ B, and suppose that E is a subset of A, E ⊂ A. The
image set f [E] is defined by

f [E] = {f(x) ∈ B | x ∈ E}.

If F ⊂ B then the pre-image f−1[F ] is defined by

f−1[F ] = {x ∈ A | f(x) ∈ F}.

Notice that an image set f [E] can be empty only if E is empty, but that a
pre-image set f−1[F ] can be empty even if F is nonempty.

Suppose now that f is a 1-1 mapping of A onto B. Then for each b ∈ B,
there exists a unique a ∈ A such that f(a) = b. This allows us to define a
mapping called the inverse mapping of f , which we denote by f−1, where

f−1 : B → A.

is defined by f−1(b) = a provided a is the unique element of A such that
f(a) = b. It is easy to show that f−1 is also one-to-one and onto. This usage
of the notation f−1 should not be confused with its usage for the pre-image
of a set, which is defined even if f is NOT one-to-one and onto.

For any set A, we define the identity map on A, denoted by 1A or simply
1 if the set involved is clear, as that mapping which leaves every element of
A fixed, i.e., 1A(x) = x for all x ∈ A.
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Next let f : A → B, and let E ⊂ A. The restriction of f to E is the
mapping denoted by f |E, and defined by f |E(x) = f(x) for all x ∈ E. (Here
it is assumed that E is non-empty.)

Now let A, B, and C be sets and suppose that f is a mapping from A
into B and g is a mapping from B into C. Thus we have

A
f→ B

g→ C.

Then the composite map (or product map or composition) gf is defined
as

(gf)(x) = g(f(x))

for all x ∈ A; thus gf : A → C. Since g(f(x)) is uniquely determined by
x, gf is indeed a mapping. In the special case of f : A → A, we speak of
powers of f : f 2, f 3, etc., and mean f 2(x) = f(f(x)), f 3(x) = f(f 2(x)), etc.,
for all x ∈ A.

Using the notations introduced above and assuming f is a 1-1, onto map-
ping from A to B, it is easy to see that ff−1 = 1B and f−1f = 1A.

Let S be a set and furthermore let ∼ denote a relation defined between
ordered pairs of elements of S such that given any two elements a, b ∈ S
either a ∼ b (read “a is equivalent to b”) is true or it is false. In other words,
using the previously introduced terminology and notation, we assume we are
given a mapping:

S × S → {T, F},
i.e., a mapping of the cartesian product of S with itself into a two-element set
consisting of T (“true”) and F (“false”). If (a, b) is mapped into T , we write
a ∼ b and say that “a is equivalent to b”. If (a, b) is mapped into F , we say
that “a is not equivalent to b”. The relation, ∼ , is called an equivalence
relation on S if it satisfies the following three conditions:

1. (Reflexivity) a ∼ a for all a ∈ S.

2. (Symmetry) If a ∼ b, then b ∼ a.

3. (Transitivity) If a ∼ b, and b ∼ c, then a ∼ c.

The following are examples of equivalence relations:

Example 1.1.1. Take S to be the set of all triangles in the plane and take ∼
to be the relation of congruence, ≡, or equally well, take ∼ to be the relation
of similarity.
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Example 1.1.2. Take S to be the set of all lines in the plane and ∼ to be
the relation of being parallel. (By convention, a line is parallel to itself.)

Example 1.1.3. Take S = Z, the set of all integers, and let m be a fixed
positive integer. Define a ∼ b if and only if m divides a − b. This special
equivalence relation is denoted by a ≡ b (mod m), read a is congruent to b
modulo (or just mod) m. It will be treated in more detail in the next section.

Now suppose that we have a set S and an equivalence relation defined on
S. We denote by [a], the set of all elements of S which are equivalent to a,
i.e.,

[a] = {x ∈ S | a ∼ x}.
Such a set is called an equivalence class. Clearly a ∈ [a] by the first
condition for an equivalence relation, hence [a] 6= ∅, for all a ∈ S. We claim,
next, that for a, b ∈ S either [a] = [b] or [a] and [b] are disjoint sets, i.e.,
[a] ∩ [b] = ∅. To this end, suppose that [a] ∩ [b] 6= ∅. Then there is a d such
that d ∈ [a] and d ∈ [b]. Let c be any element in [a]. Then c ∼ a and a ∼ d.
Hence c ∼ d. Since also d ∼ b, it follows that c ∼ b, which implies c ∈ [b].
Thus [a] ⊂ [b]. Similarly, [b] ⊂ [a]. We have, therefore shown that either [a]
and [b] are disjoint or are equal.

Summarizing, we have the following result.

Theorem 1.1.4. If S is a set with an equivalence relation defined on it, then
S is decomposed into disjoint, nonempty equivalence classes. (We say S is
partitioned.) This is denoted by S = [a], where it is understood that the
union is taken over only certain a ∈ S so that the classes are disjoint.

Next, we want to consider one further equivalence relation of great impor-
tance. It will occur in more specialized settings latter, and we consider the
general case now. For this purpose let E and F be sets, and let f : E → F .
For a, b ∈ E define a ∼ b if and only if f(a) = f(b). It is readily seen that
this is an equivalence relation on E. Let E denote the set of all equivalence
classes and consider the following mappings:

E
κ→ E

g→ f [E]
i→ F,

where κ(a) = [a], g([a]) = f(a), and i(f(a))) = f(a). Clearly κ is an onto
mapping. We claim that g is, first of all, well-defined: [a] = [b] implies
g([a]) = g([b]). Indeed, if [a] = [b], then a ∈ [b] or a ∼ b, because a ∈ [a],
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so f(a) = f(b); hence g([a]) = g([b]), proving the claim. Moreover, g is 1-1.
Namely if g([a]) = g([b]), then f(a) = f(b), so a ∼ b and, therefore, [a] = [b].
Also g is onto; for if c ∈ f [E], then c = f(a) for some a ∈ E, so c = g([a]).
Finally, i is clearly a 1-1 mapping, and it is also clear that f = ig .

Thus it is seen that an arbitrary mapping f of one set into another can be
written (factored) as a product of three mappings each of which has certain
nice features which f in general need not possess.

1.1.1 Exercises

1. Let f : A → B and let {Eα}α∈Λ be a collection of subsets of A. Prove
that

(a) f [∪αEα] = ∪αf [Eα],

(b) f [∩αEα] ⊂ ∩αf [Eα].

2. Let f : A → B and let {Fα}α∈Λ be a collection of subsets of B. Prove
that

(a) f−1[∪αFα] = ∪αf
−1[Fα],

(b) f−1[∩αFα] = ∩αf
−1[Fα].

3. Construct examples of the following:

(a) A mapping which is not one-to-one and not onto.

(b) A mapping which is not one-to-one, but is onto.

(c) A mapping which is one-to-one, but is not onto.

4. Construct an example of a mapping f : A → B such that f [E ∩ F ] 6=
f [E] ∩ f [F ], where E,F ⊂ A.

5. Using the notation in problem 1, show that if f is one-to-one, then
f [∩αEα] = ∩αf [Eα].

6. Let f : A→ B. Show that

(a) if f is one-to-one then f−1[f [A]] = A,

(b) if f is onto, f(f−1(B)) = B.
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7. Let A
f→ B

g→ C. Show that if f is one-to-one and onto and if g is
one-to-one and onto, then gf is one-to-one and onto.

8. Let A
f→ B

g→ C
h→ D. Show that (hg)f = h(gf). (Composition is

associative).

9. Give examples of relations on a set S which satisfy all but one of the
axioms for an equivalence relation on S.

10. Determine the equivalence classes for Example 1.1.3.

11. Show that if S 6= ∅ has a partition into disjoint nonempty subsets,
then an equivalence relation may be defined on S (actually find this
equivalence relation and show that it is an equivalence relation) for
which the subsets of the partition are the equivalence classes. (Converse
of Theorem 1.1.4)

12. Let f : R → R be the map given by f(x) = x2. Let

A = [1, 2] = {x ∈ R | 1 ≤ x ≤ 2},

B = (−1, 1) = {x ∈ R | − 1 < x < 1},
C = (4, 9) = {x ∈ R | 4 < x < 9},
D = [0, 9] = {x ∈ R | 0 ≤ x ≤ 9}.

Find

(a) f [A],

(b) f [B],

(c) f−1[C],

(d) f−1[D],

(e) a nonempty set E ⊂ R such that f−1[E] = ∅.

1.2 Number theory

Just as in the case of set theory, our discussion of number theory will be
strictly naive, e.g., we shall not develop N from axioms, we shall just assume
that if S ⊂ N and S 6= ∅, then S has a smallest element, etc. We first
establish the division algorithm:



14 CHAPTER 1. PRELIMINARIES

Theorem 1.2.1. (Division Algorithm): Let a, b ∈ Z with b 6= 0. Then there
exist unique integers q and r such that

a = bq + r and 0 ≤ r < |b|.

Proof: Let
S = {m|b| | m ∈ Z and m|b| ≤ a}.

Note that S 6= ∅ because −|a||b| ∈ S. The set S must therefore contain a
largest element, say t|b| . Then, by the definition of S, t|b| ≤ a. Putting
r = a− t|b| , we have

a = t|b| + r where r ≥ 0. (1.1)

But (t+1)|b| = t|b|+ |b| > t|b|. Thus by the maximality of t|b|, (t+1)|b| /∈ S,
so (t+ 1)|b| > a. Hence

t|b| + |b| > t|b| + r

or r < |b| . Finally let

q =

{

t, if b > 0,
−t, if b < 0,

So that qb = t|b| if b > 0 and qb = −tb = t(−b) = t|b| if b < 0. Thus by (1.1)

a = qb+ r where 0 ≤ r < |b|,

and the existence part of the theorem has been established.
Suppose now that

a = bq + r = bq + r

where 0 ≤ r < |b| and 0 ≤ r < |b|. Then

r − r′ = b(q′ − q), (1.2)

but −|b| < r − r′ < |b|, which in conjunction with (1.2) implies r − r′ = 0;
thus bq = bq′, thus q = q′ (since b 6= 0). So we have uniqueness and our proof
is complete. �

Let a, b ∈ Z. We say that b divides a, written b|a, if there exists a c ∈ Z

such that a = bc. If b does not divide a, we write b 6 |a.
Definition 1.2.2. The greatest common divisor (g.c.d.) of two integers
a and b is a positive integer d, denoted by gcd(a, b), such that d|a and d|b,
and if c is any integer such that c|a and c|b, then c|d. (Here we assume that
a and b are not both 0; in that case, we define gcd(0, 0) = 0.)



1.2. NUMBER THEORY 15

We observe first that if the gcd(a, b)exists, then it is unique. To see
this, suppose we have two g.c.d.’s d and d′. Since d|a and d|b, and since
d = gcd(a, b), then we must have d|d′. Similarly, d′|d; hence d = d (since the
g.c.d. > 0, by definition).

Now let us show the g.c.d exists. Suppose a, b ∈ Z and also suppose a 6= 0
or b 6= 0. We let S denote the set of all positive integers of the form xa+ yb
where x, y ∈ Z. S 6= ∅, and therefore, S must contain a smallest integer, d.
We claim that d = gcd(a, b). Since d ∈ S, there exist x1, y1 ∈ Z such that

d = x1a+ y1b. (1.3)

If c|a and c|b, then clearly from (1.3) c|d. Therefore, we must simply show
that d|a and d|b. By the Division Algorithm,

a = dq + r, where 0 ≤ r < d.

Hence r = a − dq = a − q(x1a + y1b) = x2a + y2b, where x2 = 1 − qx1 and
y2 = qy1. Thus if r > 0, then r ∈ S, which would contradict the minimality
of d. Thus r = 0 and d|a. Similarly, d|b.

Summarizing, we have the following result.

Theorem 1.2.3. The greatest common divisor d = gcd(a, b) of any two
integers exists, is unique, and can be expressed in the form d = xa+yb where
x, y ∈ Z.

Note that while d is unique, x and y are not, e.g., if a = 6 and b = 4,
then d = 2 and (x, y) can be (1, 1), (1, 2), (3, 4). etc. We note that the
proof we have given for the existence of the g.c.d. is not constructive. We
wish now to given an alternate proof for the existence of the g.c.d. which at
the same time yields a systematic finite constructive way (or an algorithm)
for obtaining it. (This is called the Euclidean Algorithm.) We assume
without loss of generality that b > 0 (go through this for b < 0 to convince
yourself that it can be done!). We then write

a = bq1 + r1, 0 ≤ r1 < b.

Now if r1 = 0, the process stops. If not, we write

b = r1q2 + r2, 0 ≤ r2 < r1.
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If r2 = 0, the process stops. If not, write

r1 = r2q3 + r3, 0 ≤ r3 < r2

and continue until a 0 remainder is obtained, which must be the case eventu-
ally since b > r1 > r2 > r3 > ... is a sequence of decreasing positive integers.
Thus we have

a = bq1 + r1
b = r1q2 + r2
r1 = r2q3 + r3

...rn−2 = rn−1qn + rn

rn−1 = rnqn+1,

(1.4)

i.e., rn is the last nonzero remainder.
Now we claim that the above Euclidean Algorithm yields the gcd.
Proof: Note that rn|rn−1, so from the next to the last equation in (1.4),

we see that rn|rn−2, and continuing up the “scale” in (1.4), we eventually see
that rn|b and rn|a. Now if c|a and c|b, then the first equation in (1.4) implies
that c|r1, which implies, by the second equation that c|r2, and continuing
down in this fashion, we finally have that c|rn. Thus rn = gcd(a, b). �

The reader should have no difficulty in applying this algorithm to particu-
lar cases. It also should be noted that the Euclidean Algorithm, in particular
equations (1.4), may also easily be used to write the g.c.d. of a and b as a
linear combination of a and b, i.e., in the form xa + yb with x, y ∈ Z.

For a, b ∈ Z, if gcd(a, b) = 1, then we say that the integers a and b are
relatively prime (or coprime).

Definition 1.2.4. The least common multiple (l.c.m.) of two nonzero
integers a and b is a positive integer t, written lcm(a, b), such that a|t and
b|t, and if a|c and b|c, then t|c. We define lcm(0, a) = 0 for any integer a.

As in the case of the g.c.d., it is easy to see that if the l.c.m. exists it
is unique. Therefore we consider the existence. Since by Definition 1.2.4
lcm(0, a) = 0 for any a ∈ Z, we now assume that both a and b are nonzero
integers. Note that there is at least one positive common multiple, namely
±ab. Thus there must exist a smallest positive common multiple. Call it t.
Let c be any common multiple of a and b. Clearly, gcd(t, c) ≤ t. However,
a|t and a|c; therefore, a|gcd(t, c). Similarly, b|gcd(t, c). Hence, gcd(t, c) is
a common multiple of a and b. Since t was chosen as the smallest positive



1.2. NUMBER THEORY 17

common multiple, we must have t = gcd(t, c). This implies t|c, and completes
the existence proof.

We will now establish a few useful properties regarding the g.c.d. and
l.c.m. which will be used quite frequently.

Theorem 1.2.5. If m is a positive integer, then gcd(ma,mb) = mgcd(a, b).

Proof: Let d = gcd(a, b) and δ = gcd(ma,mb). Since d|a and d|b, we have
that md|ma and md|mb; consequently md|δ. On the basis of Theorem 1.2.3,
we can write d = xa + yb, where x, y ∈ Z. Then md = x(ma) + y(mb) from
which it is clear that δ|md. Thus δ = md, i.e., gcd(ma,mb) = mgcd(a, b). �

The next theorem is actually a simple consequence of Theorem 1.2.5.

Theorem 1.2.6. If m is a positive integer, and if m|a and m|b, then gcd( a
m
, b

m
) =

gcd(a,b)
m

.

Proof: gcd(a, b) = gcd(m a
m
, m b

m
) = m · gcd( a

m
, b

m
), by Theorem 1.2.5. A

division by m completes the proof. �

Corollary 1.2.7. Let d = gcd(a, b). Then gcd(a
d
, b

d
) = 1.

Proof: gcd(a
d
, b

d
) = gcd(a,b)

d
= 1. �

In other words, the corollary states that when two numbers are divided
by their g.c.d., the resulting quotients will be relatively prime.

Theorem 1.2.8. If c|ab, and gcd(c, b) = 1, then c|a.
Proof: Since gcd(c, b) = 1, there exist integers x and y such that 1 =

bx+ cy. Thus a = abx + acy, and since c|ab and c|ac, it is clear that c|a. �

Definition 1.2.9. A positive integer p > 1 is called a prime if its only
divisors are ±1 and ±p.

Using this notion, we can immediately state the following corollary to
Theorem 1.2.8.

Corollary 1.2.10. If p is a prime such that p|ab, then p|a or p|b.
Proof: If p|a, are done. If p|a, then we claim that the gcd(a, p) = 1. For

if d = gcd(a, p), then d|a and d|p. From the definition of prime, d|p implies
d = 1 or = p (recall that the g.c.d. > 0). Since p 6 |a, d must be 1. Now from
Theorem 1.2.8, p|ab and gcd(a, p) = 1 imply p|b. �

As our final theorem pertaining directly to divisibility in Z, we establish
the following connection between the g.c.d. and l.c.m.
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Theorem 1.2.11. If a and b are positive integers, then gcd(a, b) · lcm(a, b) =
ab.

Proof: Consider ab
gcd(a,b)

. We can write this as

ab

gcd(a, b)
=

a

gcd(a, b)
b,

which is certainly a multiple of b. Similarly,

ab

gcd(a, b)
=

b

gcd(a, b)
a,

is a multiple of a. Hence ab
gcd(a,b)

is a common multiple of a and b. Thus

lcm(a, b)| ab
gcd(a,b)

or

lcm(a, b)gcd(a, b)|ab. (1.5)

Next, consider ab
lcm(a,b)

. This is integral since lcm(a, b)|ab. Also, since a|lcm(a, b),

we have lcm(a, b) = ac, for some c ∈ Z. This imples

ab

lcm(a, b)
=
ab

ac
=
b

c
,

and so b/c is integral. However, b
c
|b. Thus ab

lcm(a,b)
|b, Similarly, ab

lcm(a,b)
|a, and

therefore ab
lcm(a,b)

|gcd(a, b), or

ab|lcm(a, b) · gcd(a, b). (1.6)

Comparing (1.6) and (1.5) yields the theorem. �

As our final consideration in this section, we turn to the equivalence
relation introduced in Example 1.1.3. We recall that a ≡ b (mod m) means
m|(a− b).

We next note that any integer a is congruent modulo m to one of the
integers 0, 1, 2, ..., m − 1. For by the Division Algorithm, we can write a =
qm+r, where 0 ≤ r < m, so a−r = qm, i.e., a ≡ r mod m, where 0 ≤ r < m.

We therefore have m distinct equivalence classes [0], [1], [2], ..., [m − 1]
such that any integer is in one of these classes, and the classes are disjoint.
The equivalence classes for this special equivalence relation are usually called
residue classes modulo m, and a set of elements, exactly one from each
class, is referred to as a complete residue system modulo m.

We shall now establish a few properties of the congruence relation.
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Theorem 1.2.12. If a ≡ b (mod m) and c ≡ d (mod m) then

(1) a+ c ≡ b+ d (mod m),

(2) ac ≡ bd (mod m).

Proof: For (1), m|(a − b) and m|(c − d) imply m|(a − b + c − d), i.e.,
m|(a+c− (b+d)) which is equivalent to (1). For (2), m|(c−d) and m|(a−b)
imply m|a(c− d) and m|d(a− b). Thus m|a(c− d) + d(a− b) or m|(ac− bd),
which is equivalent to (2). �

Thus with regard to addition and multiplication, the congruence relation-
ship behaves like equality. This ceases to be the case with divisibility; e.g.,
it does not follow from ac ≡ bc (mod m) that a ≡ b (mod m). For example
9 ≡ 6 (mod 3) but 3 6≡ 2 (mod 3). We do, however, have the following
theorem pertaining to division.

Theorem 1.2.13. If ac ≡ bc (mod m) and if d = gcd(c,m), then a ≡ b (mod
m
d
).

Proof: By the hypothesis, m|c(a− b).
Let c = dc′ and m = dm′ where c′, m′ ∈ Z, and gcd(c′, m′) = 1 by the

Corollary 1.2.7. Then dm′|dc(a − b), or m′|c′(a − b). Since (c′, m′) = 1,
Theorem 1.2.8 implies that m′|(a− b). This means that a ≡ b (mod m′) and
since m′ = m

d
this completes the proof. �

We can see from this theorem that should gcd(c,m) = 1 (i.e., if c and m
are relatively prime), then we can divide by c in a relationship of the form
ac ≡ bc (mod m).

Definition 1.2.14. If n is a positive integer, the Euler φ-function, φ(n)
is defined to be the number of positive integers less than or equal to n and
relatively prime to n.

One can show, that if gcd(m,n) = 1, then φ(mn) = φ(m)φ(n). Such
functions are called multiplicative. (See Theorem 9.2.5.)

Finally, suppose that a is an integer prime to the positive integer m, i.e.,
gcd(a,m) = 1. We claim that every element of the residue class [a] is also
prime to m. Thus suppose that b ∈ [a], so b ≡ a (mod m). If d = gcd(b,m),
then since m|(b − a), d|(b − a), but d|b, so d|a. Consequently, d|a and d|m
which implies d = 1 since gcd(a,m) = 1. On the basis of this it makes sense
to say that a residue class is prime to m. We know that there are φ(m)



20 CHAPTER 1. PRELIMINARIES

residue classes prime to m, and a set of elements, exactly one from each of
these classes, is called a reduced residue system modulo m.

We shall denote the set of residue classes prime to m by R(m).

1.2.1 Exercises

1. Prove that if two positive integers divide each other, then they must
be equal; i.e., if a, b ∈ N, a|b, and b|a, then a = b.

2. Extend the definition of g.c.d. to three elements a, b, c ∈ Z and de-
note it by gcd(a, b, c). Prove that gcd(a, b, c) = gcd(gcd(a, b), c) =
gcd(a, gcd(b, c)). (Note that gcd(a, b, c) = 1 does not imply that a, b, c
are pairwise relatively prime.)

3. Show that for a, b, c ∈ Z if a|c and b|c, and gcd(a, b) = 1, then ab|c.

4. Suppose gcd(a, b) = 1. Show that gcd(a+ b, a− b) = 1 or = 2.

5. Prove that the product of any three consecutive integers is divisible by
6(= 3!). Try to generalize this.

6. Show that the set of integers 12, 22, ..., m2 is not a complete residue
system modulo m if m > 2.

7. Let a1, a2, ..., am be a complete residue system modulo m. Show that,
if gcd(a,m) = 1, then aa1, aa2, ...aam is also a complete residue system
modulo m.

8. Let a1, a2, ..., aφ(m) be a reduced residue system modulo m and let
gcd(a,m) = 1. Show that aa1, aa2, ..., aaφ(m) is also a reduced residue
system modulo m.

9. If gcd(a,m) = 1 show that there is an integer b such that ab ≡ 1 (mod
m). Also show that gcd(b,m) = 1.



Chapter 2

Introduction to Groups

In this chapter, we shall consider in some detail the algebraic structure which
will be of primary concern to us throughout, namely the notion of a group.
Actually the reader has come in contact, during his or her mathematical
career, with specific examples of groups as will be seen by the examples we
shall give. All these examples have features in common which are desirable
to axiomatize. When we prove results for the general structure, they apply
automatically to all the specific examples.

2.1 Definition of a group

Before giving the definition of a group, it is necessary to define a binary
operation on a set S.

Definition 2.1.1. A binary operation on a set S is a mapping of S × S
into S.

In other words a binary operation on S is given when to every pair (a, b)
of elements of S another element c ∈ S is associated. The fact that c ∈ S is
sometimes expressed by saying a binary operation, or just an operation, on
S is closed. This image element, c, is usually denoted by ab or a + b; still
other notations such as a ◦ b or a ∗ b are also frequently used. We will adopt
for the most part the “multiplicative” notation ab instead of the “additive”
notation a + b. As a word of warning, we remind the reader that S is an
arbitrary set not necessarily a set of numbers and one should not give any
special significance to the juxtaposition (or product) ab, such as the product

21
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of numbers. The elements of S, for example, could be mappings (functions).
We shall at times speak of the “product of a and b” as the image element ab,
and we also sometimes will use “sum of a and b” for a+b, when this notation
is in use, but again the reader should not in general think of these elements
as numbers. The reader should also note that a binary operation is defined
on an ordered pair of set elements, so that in general, ab and ba are distinct.

We now proceed to the definition of a group.

Definition 2.1.2. A group is a set G together with a binary operation
defined on G such that

1. a(bc) = (ab)c, for all a, b, c ∈ G (associative law),

2. There exists an element e ∈ G, called the identity element, such that
ae = ea = a for all a ∈ G,

3. To each a ∈ G, there exists an element a−1 ∈ G, called the inverse of
a, such that aa−1 = a−1a = e.

Let us remark immediately that since a group G has a binary operation
defined on it the operation is closed, i.e., for any a, b ∈ G it must be true that
ab ∈ G. We also note that it is customary to talk of a group G in a given
discussion. This is actually not precise because a group, as just defined, is
a set G together with a binary operation and it is possible that on a given
set G a number of binary operations can be introduced such that the set G
together with each of these operations is a group. In any discussion, however,
the binary operation will be fixed and there will be no confusion in speaking
just of the group G.

A set G together with a binary operation which satisfies condition (1) of
Definition 2.1.2 is called a semi-group.

Before proving some simple consequences of the axioms of a group, we
shall give a number of examples of groups, semi-groups, and objects which
are neither. More examples will appear during the course of our development.

Example 2.1.3. Take G = Z+, the set of positive integers (also denoted by
N), and let the binary operation be usual addition of integers. Clearly G is a
semi-group, but G lacks an identity element and inverses, so that G is not a
group. �
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Example 2.1.4. Let G = Z+, but now take the binary operation to be usual
multiplication of integers. Again, it is clear that G is a semi-group, but not
a group since inverses (except for the integer 1) are missing. �

Example 2.1.5. Let G = Z, the set of all integers, and let the operation be
addition of integers. Then G is readily seen to be a group. G has identity 0,
and each x in G has inverse −x. �

Example 2.1.6. Let G = Z, and take the operation to be multiplication of
integers. Then G is just a semi-group. (WHY?) �

Example 2.1.7. Let G = Z, the set of all negative integers and let the
operation be multiplication of integers. This is not a binary operation on
Z since it is not closed, or in other words it is not a mapping into Z, and
therefore, G with respect to this operation is not even a semi-group. �

Example 2.1.8. Let G be the set of all rotations of the plane about the
origin including the rotation through 0o and take the binary operation to be
composition of maps. Then it is easy to see that G is a group. �

Example 2.1.9. Let G = Q, the set of all rational numbers, and let the
binary operation be addition of rationals. Then G is a group. Similarly, the
set, G = Q×, of all nonzero rationals with respect to the usual multiplication
of rationals is a group. �

Example 2.1.10. Let G = {1,−1}, i.e., the 2-element set consisting of the
integers ±1, and take the binary operation to be usual multiplication. Then
G is a group. �

Example 2.1.11. Let G be the set of all complex n-th roots of unity, i.e.,
G = {z ∈ C | zn = 1}, where C = {a + bi | a, b are real and i =

√
−1} is

the set of all complex numbers. Let the binary operation be multiplication of
complex numbers. Then G is a group. This example is a generalization of
the preceding one in which n = 2. Note the order of G, |G|, is n.

This group shall be denoted by µn. �

Example 2.1.12. Let G be the set of all complex numbers which are roots of
unity of any degree with the usual multiplication of complex numbers. Again
G is a group, but this time G is infinite (cf. Example 2.1.11). �
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Example 2.1.13. Let G be the set of all n×n matrices with real entries and
determinant not 0. Take the binary operation to be matrix multiplication.
Then G is a group. This group is called the general linear group of n × n
matrices over R, the set of real numbers. It is denoted by GL(n,R). (Recall
that if A and B are n × n matrices, det(AB) = detA detB.) This group
can also be interpreted as a set of functions: The set of 1-1, onto, linear
transformations from the vector space Rn to itself. Matrix multiplication
corresponds to composition of these functions. �

Example 2.1.14. Let G = Cn, all n-tuples of complex numbers, i.e., G =
C × ...× C (n times). Let x, y ∈ G, then x = (a1, ..., an) and y = (b1, ..., bn),
where the ai and bi are complex numbers. Define x+y = (a1 +b1, ..., an +bn).
It is easy to see that G with respect to this binary operation is a group. �

Example 2.1.15. Let A be any set. Then a mapping f : A → A which
is both 1-1 and onto is called a permutation of A. To be more concrete,
let A = {1, 2, ..., n}. Any 1-1, onto function, f , from A to A is a permu-
tation (sometimes called a permutation of degree n) of A. Suppose f is
a permutation of degree n, and let f(1) = a1, f(2) = a2, ..., f(n) = an,
where a1, a2, ..., an is just some rearrangement of the set A (thus the name
permutation). We shall denote this situation by writing

f =

(

1 2 ... n
a1 a2 ... an

)

(2.1)

i.e., the bottom entries indicate the images of the top entries under the map-
ping f . Sn denotes the set of all permutations of degree n. Clearly 1, Sn = n!.
If f, g ∈ Sn, we take the binary operation to be composition of mapping fg;
that this is, indeed, a binary operation follows as a special case of exercise 7
in the exercises for Section 1.1. The identity permutation, here denoted by
1, is just

1 =

(

1 2 ... n
1 2 ... n

)

i.e., 1 = 1A in previous notation. If f is given by (2.1), then f−1 is just

f =

(

a1 a2 ... an

1 2 ... n

)

1To determine a permutation f as above, there are n possibilities for a1, n−1 possibili-
ties for a2, ..., 1 possibility for an. By the multiplicative principle of counting (in any com-
binatorics book), it follows that the number of possibly permutations f is n·(n−1)...·1 = n!.
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Then Sn is a group since the associative law is true in general for mappings
(see exercise 8 in the exercises for Section 1.1). This group Sn is called the
symmetric group of degree n.

Let us take a look at S3, i.e., all permutations of the set {1, 2, 3}:

1 =

(

1 2 3
1 2 3

)

, r1 =

(

1 2 3
2 3 1

)

, r2 =

(

1 2 3
3 1 2

)

,

f1 =

(

1 2 3
1 3 2

)

, f2 =

(

1 2 3
3 2 1

)

, f3 =

(

1 2 3
2 1 3

) .

The operation here is composition of functions; e.g., to find f1r2, we note
that

f1r2(1) = f1(r2(1)) = f1(3) = 2,
f1r2(2) = f1(r2(2)) = f1(1) = 1,
f1r2(3) = f1(r2(3)) = f1(2) = 3.

Thus f1r2 = f3. Observe in f1r2, r2 is applied first and f1 next, so we read
from right to left. We could also write

f1r2 =

(

1 2 3
1 3 2

) (

1 2 3
3 1 2

)

=

(

1 2 3
2 1 3

)

= f3,

and again reading from right to left, we begin with

(

1 2 3
3 1 2

)

to get for

example that 1 7−→ 3 and then 3 7−→ 2 so 1 7−→ 2 under f1r2. As another
example, consider

r2f1 =

(

1 2 3
3 1 2

) (

1 2 3
1 3 2

)

=

(

1 2 3
3 2 1

)

= f2.

Note that f1r2 6= r2f1. �

If a group G contains only a finite number of elements, i.e., |G| < ∞,
then G is called a finite group; otherwise it is called an infinite group.
Often when working with groups, especially finite groups, it is useful to draw
a multiplication table (sometimes called a Cayley table). In general, let
G = {g1, ..., gn} be a group with binary operation ∗, the multiplication
table of G is:
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* g1 g2 ... gj ... gn

g1

g2
...
gi gi ∗ gj
...
gn

The entry in the row of x ∈ G and column of y ∈ G is x ∗ y ∈ G (in that
order). The reader should check that using the notation of the previous
Example 2.1.15, that S3 has the Cayley table

S3 1 r1 r2 f1 f24 f3

1 1 r1 r2 f1 f2 f3

r1 r1 r2 1 f3 f1 f2

r2 r2 1 r1 f2 f3 f1

f1 f1 f2 f3 1 r1 r2
f2 f2 f3 f1 r2 1 r1
f3 f3 f1 f2 r1 r2 1

If G is a group and ab = ba for all a, b ∈ G, then G is called a commu-
tative group or an abelian group. Note from Example 2.1.15, S3 is not
abelian (as a matter of fact, this implies that Sn is a non-abelian for any
n ≥ 3). In the case of G being abelian, it is customary to adopt an additive
notation and write a+ b instead of ab, 0 instead of e (or 1), and −a instead
of a−1.

2.2 Some consequences of the axioms

We shall now proceed to obtain a number of direct consequences from the
axioms of a group. Other such consequences will be given in the exercises.
We shall call all these consequences elementary properties of groups.

2.2.1 Elementary Properties of Groups

Property 1. Generalized associative law: We shall not give a careful formu-
lation of this property nor shall we prove it (the interested reader can consult
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[Sc], p. 3, 4). This property essentially means that parentheses can be in-
serted or deleted at will (just as long as the order is not changed) without
affecting the value of a product involving any number of group elements; e.g.,
if a, b, c, d ∈ G, G a group, then aa(bcdbb) = (aa)b(cd)bb = ((aa)b)(cd)(bb),
etc.

Property 2. Uniqueness of the identity element: We claim that the element
e of condition 2 of Definition 2.1.2 is unique.

Proof: For suppose that f is also an identity of G; i.e., af = fa = a for
all a ∈ G. Then ef = e, but on the other hand ef = f , since e is an identity
element. Consequently, e = f . �

Property 3. Uniqueness of the inverse element: We claim that for each
element a in G the element a−1 of condition 3 of Definition 2.1.2 is unique.

Proof: Namely, suppose ab = ba = e and ac = ca = e. Then b = be =
b(ac) = (ba)c = ec = c. For each a ∈ G we call this unique element a−1 ∈ G.
�

Property 4. If a and b are elements of a group G, then there exist unique
elements x and y of G such that xa = b and ay = b.

Proof: If x0a = b, then multiplying both sides on the right by a−1,
yields (x0a)a

−1 = ba−1 or that x0 = ba−1. Conversely, if x = ba−1, then
xa = (ba−1)a = b(a−1a) = be = b. Hence, the equation xa = b has the
unique solution x = ba−1. Similarly, one shows that the equation ay = b has
the unique solution y = a−1b. �

Property 5. Alternate group definition (A): If G is a semi-group in which
the equations xa = b and ay = b are solvable for arbitrary a, b ∈ G, then G
is a group.

Proof: Let e be a solution of the equation xa = a. Thus ea = a. More-
over, for any b ∈ G, there exists an element y ∈ G such that ay = b. Now
eb = e(ay) = (ea)y = ay = b. This shows that there exists an element e ∈ G
such that eb = b for any b ∈ G. Now, analogously, consider the equation
ay = a and let f be a solution so that af = a. Then for any b ∈ G there
exists an x ∈ G such that xa = b; thus bf = (xa)f = x(af) = xa = b, and
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we have shown that there exists an element f ∈ G such that bf = b for any
b ∈ G. Thus, we have

ef = f and ef = e,

so e = f , and consequently G contains an identity element. Now it follows
from the hypothesis, that there exist x0, y0 ∈ G such that x0a = e and
ay0 = e. Hence, y0 = ey0 = (x0a)y0 = x0(ay0) = x0e = x0, so x0 = y0 = a−1.
This shows that the given statement is sufficient for G being a group. The
fact that it is also necessary is a consequence of Property 4 of our elementary
group properties. �

Property 6. Cancellation laws: If G is any group, then

(a) (Left Cancellation) wx = wy implies x = y for w, x, y ∈ G.

(b) (Right Cancellation) xz = yz implies x = y for x, y, z ∈ G.

Proof: Multiply both sides of (a) by w−1 on the left; (b) is done similarly.
�

We note that as a consequence of the cancellation laws, if we write the
Cayley table for G there will be no duplications in any row or column. As a
matter of fact, this property of groups is quite useful to keep in mind when
constructing the table in the first place. (See also Exercise 8 for this chapter.)

Property 7. Alternate finite group definition: A finite semi-group (i.e., a
semi-group with a finite number of elements) in which the cancellation laws
hold is a group.

Proof: Clearly this property is necessary for being a group from property
6. Now suppose that A = {a1, a2, ..., an} is a finite semi-group satisfying the
cancellation laws (see Property 6). Let a be an arbitrary element of A. The n
elements aa1, ..., aan are then all distinct by the left cancellation law. Hence,
if b is an arbitrary element of A, then there exists an ai such that aai = b,
i.e., the equation ay = b is solvable. Similarly, the equation xa = b is solvable
in A, and therefore, by Property 5, A is a group. �

Property 8. Alternate group definition (B): If G is a semi-group which has
at least one element e ∈ G such that ae = a for all a ∈ G (such an element
is called a right identity), and, if among all such elements e, there is an
element f such that to each a ∈ G there exists an element a∗ ∈ G such that
aa∗ = f (such an element is called a right inverse), then G is a group.
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Proof: If G is a group, it is clear that these conditions are satisfied. Now
suppose G is a semi-group satisfying our conditions. Let aa∗ = f . Then
faa∗ = ff = f = aa∗. Now there exists an a∗∗ ∈ G such that a∗a∗∗ = f .
Thus, faa∗a∗∗ = aa∗a∗∗, or faf = af , so fa = a since f is a right identity.
Thus f is an identity, i.e., af = fa = a for all a ∈ G. Thus if G is a group
then f = e is the unique identity element. To prove that G is a group, let
aa∗ = f . Then

a∗aa∗ = a∗,
a∗aa∗a∗∗ = a∗a∗∗,

a∗af = f,
a∗a = f.

Hence f = e is the unique identity and a∗ = a−1 is the unique inverse of a.
�

Property 9. Laws of exponents: By (1), we know that we can unambiguously
write a1a2...an where all the ai ∈ G, G a group. If all the ai = g, one writes
this expression as gn and speaks of the nth power of g. (Note: g may not be
a number. So even though g ∈ G and gn ∈ G it may be that n /∈ G, e.g., if
G = GL(n,R).) Negative powers of g can be defined as follows:

g−n = (gn)−1 = (g−1)n.

(Note: If we just defined g−n = (g−1)n, then it can be proven by induction
on n that g−n = (gn)−1 for all n ∈ N.) Finally, one defines g0 = e. It is
then not hard to show that for m,n arbitrary integers, the following laws of
exponents hold in G:

gmgn = gngm = gm+n, (2.2)

(gm)n = gmn. (2.3)

In the case of an abelian group G written with the binary operation +,
for n ∈ Z+ and a ∈ G, one writes na instead of an, na = a+ ...+a (n times),
and (−n)a = −(na) = n(−a). The laws corresponding to (2.2) and (2.3)
become for abelian groups

ma+ na = na +ma = (m+ n)a,

n(ma) = (mn)a,

where m,n ∈ Z.
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Definition 2.2.1. Consider now an element g ∈ G, a group. If all the
powers, gn (n = 0, 1, 2, ...), of the element are distinct, then g is called an
element of infinite order in G.

Let us suppose that this is not the case. So there exist m,n, where m 6= n,
say m > n, such that gm = gn. Then

gm−n = e,

where m − n > 0. In other words, if g is not an element of infinite order,
then there exist positive integers k such that gk = e.

Definition 2.2.2. Let G be a group and a ∈ G. Let n be the smallest positive
integer, if it exists, such that an = e then n is called the order of a and we
shall write o(a) = n. One also says that a is of finite order with order n.

If o(a) = n, then all the elements

e, a, a2, ..., an−1 (2.4)

are distinct. For just as above, if any were equal we would get at = e for
t < n in contradiction to the definition of n. Moreover, we also contend
that any power ak is equal to one of the elements in (2.4). For the Division
Algorithm gives that k = nq + r, 0 ≤ r < n. Then

ak = (an)qar = ar,

by the laws of exponents. In addition, we see from this same relationship
that if o(a) = n, and ak = e, then n|k. Indeed, r < n, ar = e, and n is the
smallest positive integer such that an = e, we must have r = 0. Thus n|k.

In summary, we have our last elementary property.

Property 10. If G is a group, a ∈ G, and o(a) = n <∞, then e, a, ..., an−1

are distinct, any power of a is equal to one of these, and finally ak = e if and
only if n|k.

We have seen (Example 2.1.12) that there exist infinite groups all of whose
elements have finite orders; such groups are called periodic. In any group,
G, the identity e, of course, has finite order 1. If this is the only element of
G with finite order, then G is called torsion free.

We conclude this chapter with an important definition, viz., the notion
of a subgroup of a group G. We shall make use of this concept throughout
the text.
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Definition 2.2.3. A nonempty subset H of a group G is called a subgroup
of G if

(a) a, b ∈ H implies that ab ∈ H,

(b) e ∈ H (where e is the identity of G),

(c) a ∈ H implies that a−1 ∈ H.

Notation: We write

H ≤ G,

when H is a subgroup of G.
It is clear that a subgroup H of a group G is itself a group with respect

to the same binary operation given on G. The definition can be given in a
more succinct fashion, but we refer the reader to the exercises for this and
related matters. We now list a few examples of subgroups of some of the
groups given earlier in this chapter. Many more examples of subgroups will
be encountered in the course of our investigations.

Example 2.2.4. Let G = Q (Example 2.1.9) with binary operation to be
addition of rationals and let H = Z. Clearly H ≤ G. �

Example 2.2.5. Let G = GL(n,R) be the group of Example 2.1.13 and take
H = {A ∈ G | det(A) = 1}. Then H ≤ G. (H is called the special linear
group, denoted SL(n,R).) �

Example 2.2.6. Take G = Cn (Example 2.1.14) and H to be those n-tuples
for which the first entry is 0. Then H ≤ G. �

Example 2.2.7. Let G = {1,−1, i,−i}, i.e., the 4th roots of unity (see
Example 2.1.11) and take H = {1,−1}. Then H ≤ G. �

2.3 Exercises for Chapter 2

1. Let a, b ∈ G, G a group. Suppose o(a) = o(b) = o(ab) = 2. Then show
that ab = ba.

2. Let G be a group and H ⊂ G, H 6= ∅. Prove H ≤ G if and only if
a, b ∈ H implies ab−1 ∈ H . (1 step subgroup test)
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3. Let G be a group and let a ∈ G. Let CG(a) = {x ∈ G | ax = xa}.
Prove: CG(a) ≤ G. This subgroup is called the centralizer of a in G.

4. Suppose G is a group which has only one element a ∈ G such that
o(a) = 2. Prove that ax = xa, for all x ∈ G.

5. (Finite Subgroup Test) Let H be a nonempty finite subset of a group
G such that a, b ∈ H implies ab ∈ H . Then show that H is a subgroup
of G.

6. Show that the intersection of any collection of subgroups of a group G
is a subgroup.

7. Let G be a group. Referring to exercises 3 and 6, the subgroup Z(G) =
∩a∈GCG(a) is called the center of G. Describe in words what Z(G) is,
i.e., without using intersections.

8. Show that if G is a finite group, its multiplication table is a Latin
square, i.e., each element of the group appears once and only once in
each row and in each column of the table.



Chapter 3

Permutations

We return in this chapter to the group Sn considered in Example 2.1.15.
There we represented a permutation f in the form (2.1). This representation
is not the most convenient for many purposes, and so we shall first introduce
a much more useful representation.

3.1 Cycles and cycle notation

Again we denote by A = {1, 2, ..., n} the set on which the permutation acts.
We shall frequently denote by ai, aj, etc. arbitrary elements of A.

Definition 3.1.1. Suppose that f is a permutation of A = {1, 2, ..., n}, which
has the following effect on the elements of A: There exists an element a1 ∈ A
such that. f(a1) = a2, f(a2) = a3, ..., f(ak−1) = ak, f(ak) = a1, and f
leaves all other elements (if there are any) of A fixed, i.e., f(aj) = aj for
j 6= 1, 2, ..., k. Such a permutation f is called a cycle or a k-cycle.

We use the following notation for a k-cycle, f , as given above

f = (a1, a2, ..., ak). (3.1)

Let us elaborate a little further on the notation employed in (3.1). The cycle
notation is read from left to right, it says f takes a1 into a2, a2 into a3, etc.,
and finally ak, the last symbol, into a1, the first symbol. Moreover, f leaves
all the other elements not appearing in the representation (3.1) fixed. Note
that one can write the same cycle in many ways using this type of notation;
e.g., f = (a2, a3, ..., ak, a1), etc. (How many ways?) Also we call k the length

33
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of the cycle. Note we allow a cycle to have length 1, i.e., f = (a1); moreover,
this is just the identity map. For this reason, we will usually designate the
identity of Sn by (1). (Of course, it also could be written as (ai) where
ai ∈ A.)

If f and g are two cycles, they are called disjoint if the elements moved
by one are left fixed by the other, i.e., their representations (3.1) contain
different elements of the set A (their representations are disjoint as sets).

We claim that if f and g are disjoint cycles, then they must commute, i.e.,
fg = gf . Indeed, since the cycles f and g are disjoint, each element moved
by f is fixed by g and vice versa. First suppose f(ai) 6= ai. This implies that
g(ai) = ai and f 2(ai) 6= f(ai) (WHY?). But since f 2(ai) 6= f(ai), g(f(ai)) =
f(ai). Thus (fg)(ai) = f(g(ai)) = f(ai) while (gf)(ai) = g(f(ai)) = f(ai).
Similarly if g(aj) 6= aj, then (fg)(aj) = (gf)(aj). Finally, if f(ak) = ak and
g(ak) = ak then clearly (fg)(ak) = ak = (gf)(ak). Thus gf = fg, proving
the claim.

Before proceeding further with the theory, let us consider a specific ex-
ample. Let A = {1, 2, ..., 8} and let

f =

(

1 2 3 4 5 6 7 8
2 4 6 5 1 7 3 8

)

using the representation in (2.1). We pick an arbitrary number from the set
A, say 1. Then f(1) = 2, f(2) = 4, f(4) = 5, f(5) = 1. Now select an element
from A not in the set {1, 2, 4, 5}, say 3. Then f(3) = 6, f(6) = 7, f(7) = 3.
Next select any element of A not occurring in the set {1, 2, 4, 5} ∪ {3, 6, 7}.
The only element left is 8, and f(8) = 8. It is clear that we can now write
the permutation f as a product of cycles:

f = (1, 2, 4, 5)(3, 6, 7)(8),

where the order of the cycles is immaterial since they are disjoint and there-
fore commute. It is customary to omit such cycles as (8), i.e., elements left
fixed by f , and write f simply as

f = (1245)(367);

it being understood that the elements of A not appearing are left fixed by f .
It is not difficult to generalize what was done here for a specific example,

and show that any permutation f can be written uniquely, except for order,
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as a product of disjoint cycles. Thus let f be a permutation on the set
A = {1, 2, ...n}, and let a1 ∈ A. Let f(a1) = a2, f

2(a1) = f(a2) = a3, etc.,
and continue until a repetition is obtained. We claim that this first occurs for
a1, i.e., the first repetition is say fk(a1) = f(ak) = ak+1 = a1. For suppose
the first repetition occurs at the kth iterate of f and

fk(a1) = f(ak) = ak+1,

and ak+1 = aj , where j < k. Then

fk(a1) = f j−1(a1),

and so fk−j+1(a1) = a1, However, k − j + 1 < k if j 6= 1, and we assumed
that the first repetition occurred for k. Thus, j = 1 and so f does cyclically
permute the set {a1, a2, ..., ak}. If k < n, then there exists b1 ∈ A such that.
b1 /∈ {a1, a2, ..., ak} and we may proceed similarly with b1. We continue in
this manner until all the elements of A are accounted for. It is then seen that
f can be written in the form

f = (a1, ..., ak)(b1, ..., bℓ)(c1, ..., cm)...(h1, ..., ht). (3.2)

Note that all powers f i(a1) belong to the set {a1 = f 0(a1) = fk(a1), a2 =
f 1(a1), ..., ak = fk−1(a1)}, all powers f i(b1) belong to the set {b1 = f 0(b1) =
f ℓ(b1), b2 = f 1(b1), ..., bℓ = f ℓ−1(b1)}, ... . Here, by definition, b1 is the
smallest element in {1, 2, ..., n} which does not belong to {a1 = f 0(a1) =
fk(a1), a2 = f 1(a1), ..., ak = fk−1(a1)}, c1 is the smallest element in {1, 2, ..., n}
which does not belong to

{a1 = f 0(a1) = fk(a1), a2 = f 1(a1), ..., ak = fk−1(a1)}∩{b1 = f 0(b1) = f ℓ(b1), b2 = f 1(b1), ..., bℓ = f ℓ−

Therefore by construction, all the cycles in (3.2) are disjoint. From this it
follows that k+ ℓ+m+ ...+ t = n. It is clear that this factorization is unique
except for the order of the factors since it tells explicitly what effect f has
on each element of A.

In summary we have proven the following result.

Theorem 3.1.2. Every permutation of Sn can be written uniquely as a prod-
uct of disjoint cycles.

Let us pause to consider some examples. It is readily seen that the
elements of S3 (see Example 2.1.15) can be written in cycle notation as
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1 = (1), (1, 2), (1, 3), (2, 3), (1, 23, ), (1, 3, 2). This is the largest symmetric
group which consists entirely of cycles. In S4, for example, the element
(1, 2)(3, 4) is not a cycle. Suppose we multiply two elements of S3 say (1, 2)
and (1, 3). Now we recall from Example 2.1.15, that in forming the product
or composite here, we read from right to left. Thus to compute (1, 2)(1, 3):
We note the permutation (1, 3) takes 1 into 3 and then the permutation (1, 2)
takes 3 into 3 so the composite (1, 2)(1, 3) takes 1 into 3. Continuing the per-
mutation (1, 3) takes 3 into 1 and then the permutation (1, 2) takes 1 into 2,
so the composite (1, 2)(1, 3) takes 3 into 2. Finally (1, 3) takes 2 into 2 and
then (1, 2) takes 2 into 1 so (1, 2)(1, 3) takes 2 into 1. Thus we see

(1, 2)(1, 3) = (1, 3, 2).

The reader should note that (1, 2) = f3 and (1, 3) = f2 so (1, 2)(1, 3) =
f3f2 = r2 and r2 = (1, 3, 2) by the notation used in Example 2.1.15.

As another example of “cycle multiplication,” consider the product in S5,

(1, 2)(2, 4, 5)(1, 3)(1, 2, 5).

Reading from right to left 1 7−→ 2 7−→ 2 7−→ 4 7−→ 4 so 1 7−→ 4. Now
4 7−→ 4 7−→ 4 7−→ 5 7−→ 5 so 4 7−→ 5. Next 5 7−→ 1 7−→ 3 7−→ 3 7−→ 3 so
5 7−→ 3. Then 3 7−→ 3 7−→ 1 7−→ 1 7−→ 2 so 3 7−→ 2. Finally 2 7−→ 5 7−→
5 7−→ 2 7−→ 1, so 2 7−→ 1. Since all the elements of A = {1, 2, 3, 4, 5} have
been accounted for, we have

(1, 2)(2, 4, 5)(1, 3)(1, 2, 5) = (1, 4, 5, 3, 2).

3.1.1 Exercises

1. In S5 perform the indicated operations; write each of the following in
the 2-row form (2.1):

(a) (1, 2, 3)(1, 3)(1, 4, 5)(1, 2),

(b) (1, 3, 4)−1(1, 2)(1, 5, 3, 2),

(c) (1, 3)−1(1, 2, 4, 5)(1, 3).

2. Determine all the elements of S4. Write each such permutation as a
product of disjoint cycles.

3. Determine all subgroups of S3.
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4. Let the permutation f be a cycle of length k ≥ 1 (called a k-cycle).
Show that o(f) = k.

5. Let f = g1g2...gr be the factorization of the permutation f ∈ Sn into
disjoint cycles gk. If each gk is an nk-cycle, k = 1, 2, ..., r, determine
o(f) and justify your answer.

HINT: Use the result of problem 4.

3.2 Transpositions

We return again to the general situation with Sn. Let f ∈ Sn. If f is a
cycle of length 2, i.e., f = (a1, a2) where a1, a2 ∈ A, then f is called a
transposition. It is easy to see that any cycle can be written as a product
of transpositions, namely

(a1, ..., ak) = (a1, ak)(a1, ak−1)...(a1, a2). (3.3)

According to (3.2) any permutation can be written in terms of cycles, but the
above (3.3) shows any cycle can be written as a product of transpositions.
Thus we have the following result.

Theorem 3.2.1. Let f ∈ Sn be any permutation of degree n. Then f can be
written as a product of transpositions.

Furthermore using (3.3) and (3.2), it is readily seen that if f is any per-
mutation as in (3.2), then f can be written as a product of

W (f) = (k − 1) + (j − 1) + ...+ (t− 1) (3.4)

transpositions. The number W (f) is uniquely associated with the permuta-
tion f since f is uniquely represented (up to order) as a product of disjoint
cycles. However, there is nothing unique about the number of transpositions
occurring in an arbitrary representation of f as a product of transpositions,
e.g., in S3

(1, 3, 2) = (1, 2)(1, 3) = (1, 2)(1, 3)(1, 2)(1, 2),

since (1, 2)(1, 2) = (1), the identity permutation of S3. Although the number
of transpositions is not unique in the representation of a permutation, f , as
a product of transpositions, we shall show, however, that the parity (even
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or oddness) of that number is unique. Moreover, this depends solely on the
number W (f) uniquely associated with the representation of f given in (3.2).
More explicitly, we have the following result.

Theorem 3.2.2. If f is a permutation written as a product of disjoint cycles
and if W (f) is the associated integer given by (3.4), then if W (f) is even
(odd) any representation of f as a product of transpositions must contain an
even (odd) number of transpositions.

Proof: We first observe the following:

(a, b)(b, c1, ..., ct)(a, b1, ..., bk) = (a, b1, ..., bk, b, c1, ..., ct), (3.5)

(a, b)(a, b1..., bk, b, c1, ..., ct) = (a, b1, ..., bk)(b, c1, ..., ct). (3.6)

Suppose now that f is represented as a product of disjoint cycles, where we
include all the 1-cycles of elements of A which f fixes, if any. If a and b occur
in the same cycle in this representation for f , i.e.,

f = ...(a, b1, ..., bk, b, c1, ..., ct)..., (3.7)

as in (3.5), then in the computation of W (f) this cycle contributes k+ t+1.
Now consider (a, b)f . Since the cycles in (3.7) are disjoint and disjoint cycles
commute,

(a, b)f = ...(a, b)(a, b1..., bk, b, c1, ..., ct)...

since neither a nor b can occur in any factor of f other than (a, b1, ..., bk, b, c1, ..., ct).
So that using (3.5) (a, b) cancels out and we find that (a, b)f = ...(b, c1, ..., ct)(a, b1, ..., bk)....
Since W ((b, c1, ..., ct)(a, b1, ..., bk)) = k + t but W (a, b1, ..., bk, b, c1, ..., ct) =
k + t+ 1, we have W ((a, b)f) = W (f) − 1.

A similar analysis, using (3.6), shows that in the case where a and b occur
in different cycles in the representation of f , then W ((a, b)f) = W (f) + 1.
(The reader should verify this!) Combining both cases, we have

W ((a, b)f) = W (f) ± 1. (3.8)

Now let f be written as a product of m transpositions, say

f = (a1, b1)(a2, b2)...(am, bm).

Then
(am, bm)...(a2, b2)(a1, b1)f = 1. (3.9)
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Iterating (3.8), together with the fact that W (1) = 0, shows using (3.9) that

W (f) ± 1 ± 1 ± ...± 1 = 0,

where there are m terms of the form ±1. Thus

W (f) = ±1 ± 1...± 1,

m times. Note if exactly p are + and q = m − p are − then m = p + q and
W (f) = p − q. Hence m ≡ W (f) (mod 2). (WHY?) Thus, W (f) is even if
and only m is even and this completes the proof. �

It now makes sense to state the following definition since we know that
the parity is indeed unique.

Definition 3.2.3. A permutation f ∈ Sn is said to be even if it can be
written as a product of an even number of transpositions. Similarly, f is
called odd if it can be written as a product of an odd number of transpositions.

We note that if f and g are even permutations then so are fg and f−1 and
also the identity permutation is even. Thus the set of all even permutation
on {1, ...n}, denoted by An, is a subgroup of Sn. An is called the alternating
group. We know that |Sn| = n!. Let us compute |An| .

Suppose An = {f1, ..., fk} so |An| = k. Let t be the number of odd
permutations so t + k = n!. If g is any odd permutation then f1g, ..., fkg
are certainly all odd permutations and are all distinct, since fig = fjg if
and only i = j (see Elementary Property 6). Therefore k ≤ t. Similarly, if
{g1, ..., gt} designates the set of all odd permutations, and, again, if g is any
odd permutation, then g1g, ..., gtg are all even and are all distinct. Therefore
t ≤ k. Thus t = k and since t+ k = n!, k = An = n!/2.

3.2.1 Exercises

1. Write the elements of both S3 and S4 as products of transpositions

HINT: use the result of problem 2 from Section 3.1.

2. Prove that any element of Sn, n > 1, can be written as a product of
transpositions of the form (1, k) where k = 2, ..., n.

HINT: First prove that for any transposition (a, b), (a, b) = (1, b)(1, a)(1, b).
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3. Establish the two equations (3.5) and (3.6) used in the proof of Theorem
3.2.2.

4. Verify the case in the proof of Theorem 3.2.2 not done in the text. In
particular, if f ∈ Sn and a, b occur in different cycles in the disjoint
cycle representation of f , then use (3.6) to showW ((a, b)f) = W (f)+1.

5. Finally in the proof of Theorem 3.2.2, verify that

(a) m ≡W (f) (mod 2);

(b) W (f) is even if and only if m is even.

6. Using the result of problem 1 above, determine both A3 and A4.

7. Prove that for n > 2, any element of An can be written as a product
of cycles of the form (1, 2, k), where k = 3, 4, ...n.

HINT: Use the result of problem 2 and also establish that (1, i, j) = (1, i, 2)(1, 2, i)(1, 2, j)

and (1, j, 2) = (1, 2, j)−1 = (1, 2, j)2.



Chapter 4

Subsets of a Group and
Lagrange’s Theorem

In this chapter, we establish one of the most important theorems in finite
group theory, i.e., Lagrange’s Theorem. This theorem gives a relationship
between the order of a finite group and the order of any subgroup (in par-
ticular, if |G| < ∞ and H ⊂ G is a subgroup, then |H| | |G|). In order
to establish Lagrange’s theorem we first investigate subsets of a group and
partitions of the group with respect to these subsets.

4.1 Conjugacy

We now return from an investigation of permutation groups to the general
situation where G is an arbitrary group. In this section, we will consider two
special subgroups of G. Also we investigate a partition of G into equivalence
classes with respect to a certain equivalence relation (conjugacy) on G. An-
other partition of G into equivalence classes (cosets) will be considered in the
final section.

If a ∈ G, we define the centralizer of a in G, CG(a), as follows:

CG(a) = {g ∈ G | ag = ga}.

Thus the centralizer of a in G consists of those elements in G which commute
with a. In exercise 3 for Chapter 2, it was shown that CG(a) is a subgroup
of G.

41
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Next we consider the set

Z(G) = ∩a∈GCG(a).

Recall from exercise 7 for Chapter 2, that Z(G) ⊂ G is called the center of
G. Clearly, g ∈ Z(G) if and only if ga = ag, for all a ∈ G, i.e., the center of a
group consists precisely of those elements which commute with all elements
of the group. Thus G is abelian if and only if G = Z(G). Since Z(G) is a
subgroup of G, the identity element e ∈ Z(G). It is entirely possible that
for a given group G, Z(G) = {e} (e.g., see exercise 1 of this section). In this
case, one says that the group G has a trivial center; otherwise, one says
the center of G is non-trivial.

Again let G be an arbitrary group. We introduce a relation on G as
follows: for a, b ∈ G, define a ∼ b if and only if there is a g ∈ G such that

a = gbg−1. (4.1)

Elements a, b ∈ G related as in (4.1) are called conjugate. We claim that
(4.1) is an equivalence relation on G; viz,

(1) (Reflexivity) a ∼ a since a = eae−1.

(2) (Symmetry) a ∼ b implies that there exists a g ∈ G such that a =
gbg−1. Solving for b, b = g−1ag = (g−1)a(g−1)−1. Thus b ∼ a.

(3) (Transitivity) If a ∼ b and b ∼ c, then there exist elements g, h ∈ G
such that a = gbg−1 and b = hch−1. Therefore a = ghch−1g−1 =
(gh)c(gh)−1. So a ∼ c.

Now G is therefore partitioned according to Theorem 1.1.4 into disjoint
equivalence classes [a]. For this particular equivalence relation, that of (4.1),
we call the equivalence classes conjugacy classes and write Cl(a) instead
of [a]. Theorem 1.1.4 also yields

G =
∐

Cl(a),

where this disjoint union (
∐

has the same meaning as ∪, except that the
union is disjoint) is taken over certain a ∈ G. Let us see next what it means
that Cl(a) = {a}. This is equivalent to the fact that gag−1 = a for all g ∈ G;
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i.e., a ∈ Z(G). Thus Cl(a) = {a} if and only if a ∈ Z(G). If we collect all
such one element conjugacy classes together, then we can write

G = Z(G) ∪ (
∐

Cl(a)), (4.2)

where the union is taken over certain a ∈ G such that |Cl(a)| ≥ 2.
We turn to the case of Sn to illustrate in a specific example the concept

of conjugate elements. Let f ∈ Sn, then using the 2-row form of (2.1), we
can display the effect of f on the set A = {1, 2, ..., n} by writing

f =

(

1 2 ... n
f(1) f(2) ... f(n)

)

Now if g ∈ Sn also, then gfg−1 maps g(i) into gf(i). So gfg−1 can be
displayed by

gfg−1 =

(

g(1) g(2) ... g(n)
gf(1) gf(2) ... gf(n)

)

.

(Note: since g is 1-1 and onto g[A] = {g(1), g(2), ..., g(n)} = A.) Thus,
using the cycle representation of f from Theorem 3.1.2, we may write f as in
(3.2), i.e., f = (a1, ..., ak)(b1, ..., bℓ)...(h1, ..., ht), Then since e.g. f(ai) = ai+1

(1 ≤ i < k) and f(ak) = a1 then gfg−1(g(ai)) = g(ai+1) (1 ≤ i < k) and
gfg−1(g(ak)) = g(a1), we can write

gfg−1 = (g(a1), ..., g(ak))(g(b1), ..., g(bℓ))...(g(h1), ..., g(ht)). (4.3)

As an illustration, consider S5 and let f = (1, 5)(2, 3, 4), and g = (1, 2, 3, 4, 5).
To obtain gfg−1, we must just see what g does to the elements occurring in
f , e.g., g(1) = 2, g(5) = 1, etc.; hence, gfg−1 = (2, 1)(3, 4, 5).

Going back to the more general situation, let us assume now that the
cycle representation of f given in (3.2) above is such that k ≥ ℓ ≥ ... ≥ t and
also let’s assume that all cycles, including even the 1-cycles, i.e., elements
left fixed by f , are present. Then

M = k + ℓ+ ...+ t.

This is called a partition of n. If f and f̂ are two permutations of {1, 2, ..., n}
which are conjugate by an element of Sn, then observing that the cycle
structure of (4.3) is the same as that of (3.2), we see that the same partition
of n is associated with them. Conversely, it is easy to see that permutations
having the same cycle structure must be conjugate (see exercise 2 of this
section).

We have thus proven the following result.
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Theorem 4.1.1. Two permutations of degree n are conjugate (in Sn) if and
only if they have the same cycle structure, i.e., if and only if they induce
the same partition of n. Moreover, the number of conjugacy classes in Sn is
equal to the number of partitions of n.

4.1.1 Exercises

1. Prove that for n > 2, Sn has a trivial center, i.e., Z(Sn) = {1}.
(HINT: Suppose f ∈ Z(Sn) and f 6= 1. Write f in its disjoint cycle form
(see equation (3.2) and Theorem 3.1.2). Consider the following three cases:

Case 1 f has at least one m-cycle with m ≥ 3. Without loss of generality,
assume (a1, a2, ..., ak) in (3.2) is such that k ≥ 3. Then calculate
f · (a1, a2) and (a1, a2) · f .

Case 2 the disjoint cycle decomposition of f has at least two transpositions
(2-cycles), say k = j = 2 in (3.2), i.e., f = (a1, a2)(b1, b2).... Then
calculate (a1, b1, a2) · f and f · (a1, b1, a2).

Case 3 f = (a1, a2); then calculate (a1, a2, a3)f and f(a1, a2, a3) - recall n ≥ 3.

In each case a1, a2, a3, b1, b2 ∈ {1, 2, ..., n} and we can “calculate” all we need

to know by computing the effect of each permutation (remember permutation

is a function) acting on a1.)

2. (a) Suppose f, g ∈ Sn and they have the same cycle structure. Prove
f ∼ g (∼ means the relation of being conjugate).

(b) Explain why there are as many conjugacy classes in Sn as there are
partitions of n. (HINT: Do it for n = 3, S3, first!)

3. In S5 perform the indicated operations. Write the result first as a
product of disjoint cycles and then in the 2-row form (2.1):

(a) (1, 2, 3)(1, 3, 5)(2, 4)(1, 2, 3)−1,

(b) (1, 3, 4, 5, 2)(1, 2)(3, 5)(1, 3, 4, 5, 2)−1.

4. In S4, determine the number of conjugacy classes and the number of
permutations in each class. (See problem 2 for Section 3.1.)
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4.2 Subsets of a group

We return again to the general case where G is an arbitrary group. Let S
be an arbitrary nonempty subset of G, S ⊂ G and S 6= ∅; such a set S is
usually called a complex of G. If S1 and S2 are two complexes of G, the
product S1S2 is defined as follows:

S1S2 = {g1g2 ∈ G | g1 ∈ S1 and g2 ∈ S2}.
If S1 = {g}, a singleton set, we shall write gS2 instead of {g}S2. (A similar
notation will be followed if S2 is a singleton set.) It is clear, by the associative
law, that if S1, S2, and S3 are complexes of G, then

S1(S2S3) = (S1S2)S3.

Finally if S is a complex of G, we denote by S−1 the following set

S−1 = {g−1 | g ∈ S}.
Using the notation just introduced, we can characterize, according to

exercise 2 of Chapter 2, a subgroup as follows: a nonempty subset H of a
group G is a subgroup if and only if

H ·H−1 = H. (4.4)

It is also clear that if S = H ≤ G, then H2 = HH = H , and H−1 = H .
Next suppose that H1 ≤ G and H2 ≤ G. Assume that H1H2 ≤ G. If

a1 ≤ H1 and a2 ≤ H2, then a−1
1 ∈ H1 and a−1

2 ∈ H2, therefore a−1
1 a−1

2 ∈
H1H2. But since H1H2 is assumed itself to be a subgroup, it must contain
which is the general element ofH2H1, i.e., we have shown thatH2H1 ⊂ H1H2.
Similarly,to show thatH1H2 ⊂ H2H1, we need to show that a general element
a1a2 of H1H2 is in fact in H2H1. Since H2H1 ⊂ H1H2, we have (a1a2)

−1 =
a−1

2 a−1
1 = b1b2, where b1 ∈ H1, b2 ∈ H2. This implies a1a2 = b−1

2 b−1
1 , so

H1H2 ⊂ H2H1. Together, these imply H1H2 = H2H1.
Conversely, suppose thatH1H2 = H2H1. ThenH1H2(H1H2)

−1 =H1H2H
−1
2 H−1

1 =
H1H2H1 = H2H1H1 = H2H1 = H1H2, hence H1H2 ≤ G from the character-
ization of subgroups given in (4.4).

We, therefore, have established the following result.

Theorem 4.2.1. The product H1H2 of two subgroups H1, H2 of a group G
is itself a subgroup if and only if H1 and H2 commute, i.e., if and only if
H1H2 = H2H1.
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Warning: We caution the reader that when we say H1 and H2 commute,
we do not demand that this is so elementwise. In other words, it is not
demanded that h1h2 = h2h1 for all h1 ∈ H1 and all h2 ∈ H2; all that we
demand is that for any h1 ∈ H1 and h2 ∈ H2 h1h2 = h′2h

′
1, for some elements

h′1 ∈ H1 and h′2 ∈ H2. For example, in S3, if H1 = {(1), (123), (132)} and
H2 = {(1), (12)} then as the reader can verify H1H2 = S3 and H2H1 = S3,
so that H1H2 = H2H1. But note that (1, 2, 3)(1, 2) 6= (1, 2)(1, 2, 3) whereas
(1, 2, 3)(1, 2) = (1, 2)(1, 3, 2).

4.2.1 Exercises

1. If G is a group written additively and S1, S2, are complexes we write
S1 + S2 instead of S1S2. Let G = Z under +. Let H = {0,±4,±8, ...}
andK = {0,±10,±20, ...}. Clearly H ≤ G, K ≤ G. Determine H+K.
More generally, if H = {na | n ∈ Z} and K = {nb | n ∈ Z}. Determine
H +K. (HINT: Think of the g.c.d.)

2. Complete the proof of Theorem 4.2.1 by showing that if H1 ≤ G,
H2 ≤ G and H1H2 ≤ G, then H1H2 ⊂ H2H1.

3. Suppose H is a finite nonempty subset of a group G such that H2 =
HH ⊂ H . Prove that H ≤ G. Is this still true if H is infinite? Why
or why not?

4. Consider the following two subgroups of S4: H = {1, (1, 2)} and V4 =
{1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}. Is HV4 ≤ S4? Why or why not?
(V4 is sometimes called the Klein 4-group.)

4.3 Cosets and Lagrange’s Theorem

Again let G be an arbitrary group and let H ⊂ G. We shall now introduce
another equivalence relation on G. Namely, define for a, b ∈ G

a ∼ b if and only if a−1b ∈ H. (4.5)

Let us show, first of all, that this is indeed an equivalence relation.

(1) (Reflexivity) a ∼ a since a−1a = e ∈ H .



4.3. COSETS AND LAGRANGE’S THEOREM 47

(2) (Symmetry) a ∼ b implies a−1b ∈ H , but since H ⊂ G, so b−1a =
(a−1b)−1 ∈ H and b ∼ a.

(3) (Transitivity) If a ∼ b and b ∼ c then a−1b ∈ H and b−1c ∈ H , so
a−1b · b−1c = a−1c ∈ H , and a ∼ c.

Therefore we do have an equivalence relation on G.
Let us investigate what the equivalence classes, [a], for a ∈ G, look like

for this equivalence relation. We have a ∼ b if and only if a−1b ∈ H , i.e., if
and only if b ∈ aH . Thus [a] = aH . These classes, aH , are called left cosets
of H (recall from the previous section aH = {ah | h ∈ H}). We know from
properties of equivalence relations (Theorem 1.1.4) that either aH = bH or
aH ∩ bH = ∅. Moreover,

G =
∐

aH, (4.6)

where, as usual, the (disjoint) union is taken over certain a ∈ G.
We also note that aH = bH if and only if a ∼ b, i.e., if and only if

a−1b ∈ H , i.e., b = ah, for some h ∈ H . In particular, bH = H = eH if and
only if b ∈ H .

One could define another equivalence relation by defining a ∼ b if and
only if ba−1 ∈ H . Again this can be shown to be an equivalence relation
on G, and the equivalence classes here are sets of the form Ha, called right
cosets of H . Also, of course, one can write G =

∐

Ha, where, as above, the
(disjoint) union is taken over certain a ∈ G.

It is easy to see that any two left (right) cosets have the same order
(number of elements). To demonstrate this consider the mapping aH → bH
via ah 7−→ bh where h ∈ H . It is not hard to show that this mapping is 1-1
and onto (see exercise 1 for this section). Thus we have aH = bH . (This is
also true for right cosets and can be established in a similar manner.) Letting
b ∈ H in the above discussion, we see |aH| = |H|, for any a ∈ G.

One can also see that the collection {aH} of all distinct left cosets has the
same number of elements as the collection {Ha} of all distinct right cosets.
In other words, the number of left cosets equals the number of right cosets
(this number may be infinite). For consider the map

f : aH → Ha−1. (4.7)

This mapping is well-defined: for if aH = bH , then b = ah where h ∈ H .
Thus f(bH) = Hb−1 = Hh−1a−1 = f(aH). We did not choose the more
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suggestive “mapping” aH → Ha, which need not be well-defined. The reader
should find an example where aH → Ha is not well-defined. (Hint: Think
of H = {1, (1, 2)} in G = S3.) It is not hard to show that the mapping in
(4.7) is 1-1 and onto (see exercise 2 for this section). Hence the number of
left cosets equals the number of right cosets; this number is called the index
of H in G, denoted by [G : H ].

From the decomposition (4.6), in the special case where G is finite, we
have

|G| = [G : H ]|H|, (4.8)

or

[G : H ] =
|G|
|H| . (4.9)

This establishes the following extremely important theorem in the theory
of finite groups.

Theorem 4.3.1. (Lagrange’s Theorem) The order of a subgroup of a finite
group is a divisor of the order of the group.

As an immediate corollary, we have the following result.

Corollary 4.3.2. If |G| = n, then an = e for all a ∈ G.

Proof: Let a ∈ G and o(a) = m. Then H = {e, a, ..., am−1} is a subgroup
of G. Moreover m = |H|. So m|n, i.e., n = mk for k ∈ Z. Hence, an =
amk = e. �

In the course of proving Corollary 4.3.2, we have shown the following
result.

Corollary 4.3.3. The order of any element of a finite group is a divisor of
the order of the group.

Let us now return to the relation of conjugacy (see (4.1)) introduced in
the previous section. We first wish to get some information on the number
of elements in a conjugacy class.

Theorem 4.3.4. Let a be an element of the finite group G. Then Cl(a) =
[G : CG(a)].
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Proof: Let G =
∐

α∈Λ gαCG(a), where Λ is an indexing set such that
|Λ| = [G : CG(a)]. If we can show that any 2 elements of gαCG(a) yield the
same conjugate of a while elements from different left cosets, gβCG(a), yield
different conjugates of a then we will be done. This is because the number
of distinct conjugates of a will then be equal to the number of distinct left
cosets of CG(a) in G, that number being [G : CG(a)]. Thus consider gαx and
gαy, where x, y ∈ CG(a), then

gαxax
−1g−1

α = gαag
−1
α ,

and
gαyay

−1g−1
α = gαag

−1
α .

(WHY?) However if α, β ∈ Λ with α 6= β and if

gαag
−1
α = gβag

−1
β ,

then g−1
β gαag

−1
α gβ(g−1

β gα)a(g−1
β gα)−1 = a, which means that g−1

β gα ∈ CG(a).
In other words, gα ∈ GβCG(a), which implies that gαCG(a) = gβCG(a). This
is a contradiction because the decomposition was assumed to be a disjoint
one. �

Since the number of elements conjugate to a in a finite group G is [G :
CG(a)], that number is a divisor of G. With this information at our disposal,
we can prove the important fact that any prime power group (i.e., a group
of order pm, where p is a prime) has a non-trivial center.

Theorem 4.3.5. Let |G| = pm, p a positive prime and G a group; then Z(G)
is non-trivial.

Proof: We first decompose G via (4.2): G = Z(G)∪Cl(a)∪Cl(b)∪ ...∪
Cl(h) (disjoint), where Cl(a), Cl(b), ..., Cl(h) are called nontrivial conjugacy
classes because in each case their order is > 1. Moreover, each of their orders
divides G from Theorem 4.3.4. However since |G| = pm, it is clear then that
p||Cl(a)|, p||Cl(b)|, ..., p||Cl(h)|. However from the disjoint decomposition
it follows that

|G| = |Z(G)| + |Cl(a)| + |Cl(b)| + ... + |Cl(h)|, (4.10)

and we see that p must divide |Z(G)| which completes the proof. �

We remark that equation (4.10) is itself an important result which holds
in any finite group. It is called the class equation. The class equation says
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that the order of the group is the order of the center added to the sum of the
orders of the non-trivial conjugacy classes.

We next consider a rather useful theorem. Denote again by |S| , the
number of elements in the complex S of the group G.

Theorem 4.3.6. If H1 ≤ G, H2 ≤ G, G a finite group, then

|H1H2| =
|H1| · |H2|
|H1 ∩H2|

.

Proof: Let H = H1 ∩H2. Then H ≤ G since H1 and H2 are subgroups.
Moreover, H ≤ H2 and so we can decompose H2 into right cosets relative to
H . In other words,

H2 = Ha1 ∪Ha2 ∪ ... ∪Han (disjoint),

where n = [H2 : H ] = |H2|/|H| . Now from this decomposition, we see that

H1H2 = H1Ha1 ∪H1Ha2 ∪ ... ∪H1Han.

Since H ≤ H1, H1H = H1,

H1H2 = Ha1 ∪Ha2 ∪ ... ∪Han. (4.11)

Moreover, we contend that this union is disjoint. For suppose H1ai ∩H1aj 6=
∅, where i 6= j. Then there exist elements b, c ∈ H1 such that bai = caj or
c−1b = aja

−1
i . But c−1b ∈ H1 and also aja

−1
i ∈ H2. Thus c−1b = aja

−1
i ∈

H1 ∩ H2 = H and so Haj = Hai. This implies that the decomposition for
H2 given above is not disjoint, a contradiction. Thus the union in (4.11) is
disjoint and we have then

|H1H2| = n|H1| =
|H1| · |H2|

|H| .

�

We end this section with an application of Lagrange’s theorem, in partic-
ular of the first corollary of this theorem, to number theory.

Consider R(m), the residue classes prime tom which was first discussed at
the end of section 1.2. R(m) is a group with respect to the binary operation

[a][b] = [ab], (4.12)
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where [a], [b] ∈ R(m). First of all this operation is well-defined, for if [a] = [c]
and [b] = [d], then

a ≡ c (mod m) and b ≡ d (mod m).

Hence ab ≡ cd (mod m), using Theorem 1.2.12, i.e., [ab] = [cd]. Also [ab] ∈
R(m), for if gcd(a,m) = 1 and gcd(b,m) = 1, then it follows, by the corollary
to Theorem 1.2.8 that gcd(ab,m) = 1.

It is now a simple matter to check that the group axioms are satisfied.
We shall do so this just for one of the axioms, viz, the existence of inverses.
(See exercise 3 of this section for verification of the other group axioms.)
Indeed, let [a] ∈ R(m), therefore gcd(a,m) = 1. By Theorem 1.2.3 there
exist x, y ∈ Z such that

1 = ax+my or [1] = [a][x] + [m][y], (4.13)

where we define [a+ b] = [a] + [b], a well-defined operation also by Theorem
1.2.12. (However, this addition is not necessarily a mapping into R(m) -
actually this is a binary operation on the set of all equivalence classes. See
exercise 4 for this section.)

But [m] = [0]. Therefore (4.13) gives that [1] = [a][x]. To be done, we
must show [x] ∈ R(m), i.e., gcd(x,m) = 1. Suppose c|x and c|m, then by
(4.13) c|1, so gcd(x,m) = 1, and [x] ∈ R(m). Hence, R(m) is a group and
|R(m)| = φ(m). Thus by Corollary 1 to Lagrange’s Theorem,

[a]φ(m) = [1],

which implies the following result.

Theorem 4.3.7. (Euler’s theorem): If gcd(a,m) = 1, then aφ(m) ≡ 1 (mod
m).

In the special case where m = p, a prime, φ(m) = φ(p) = p − 1, and we
get Fermat’s Little Theorem.

Corollary 4.3.8. (Fermat) If p is a positive prime such that p 6 |a, then
ap−1 ≡ 1 (mod p)..
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4.3.1 Exercises

1. If H ≤ G, a group, and a, b ∈ H , show that the mapping f : aH → bH
defined by f(ah) = bh, for any h ∈ H , is 1-1 and onto.

2. Prove that the map in (4.7) is 1-1 and onto.

3. Verify the other two group axioms for the multiplication of equivalence
classes in R(m) defined by (4.12) (i.e., associativity and existence of
an identity element).

4. Let Zm = {[0], ..., [m − 1]}, for m a positive integer, where [x] is the
equivalence class with respect to the equivalence relation of congruence
modulo m. (Later, we shall also denote Zm by the notation Z/mZ -
see Example 6.2.1 below.)

(a) Show that Zm contains all the equivalence classes.

(b) Show that addition of equivalence classes defined by [n] + [k] =
[n+ k] is a well defined operation on Zm.

(c) Show that multiplication of equivalence classes defined by [n] · [k] =
[n · k] is a well defined operation on Zm.

(d) Finally show Zm is a group with respect to the + operation.

Use Theorem 1.2.12 above.

5. Find the left and right coset decompositions (partitions) of S3 with
respect to all of its subgroups. (See problem 3 from Section 3.1.)

6. Let G be an abelian group of order 6. Show that there exists an element
a ∈ G such that G = {e, a, a2, a3, a4, a5}, i.e., o(a) = 6.

(HINT: Use Corollary 4.3.3 of Lagrange’s Theorem first to determine the

possible orders of elements in G. Next show that if G has more than one

element of order 2, then G must have a subgroup of order 4. This is a

contradiction (why?). Thus G can only have at most one element of order

2, say x. Similarly, show G can have at most one element of order 3, say

y. Let y ∈ G such that y /∈ {e, x} but o(y) = 3. Show this implies G must

have an element of order 6 by considering xy.)

7. Suppose G is a finite group with precisely 2 conjugacy classes. Prove
|G| = 2.
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(HINT: Decompose G into conjugacy classes, where one of the classes is

the Cl(e). Write an equation for the |G| from this decomposition - like the

class equation (4.10). What is |Cl(e)|? Next use Theorem 4.3.4 to find the

order of the other conjugacy class. Finally, use Lagrange’s Theorem 4.3.1, in

particular equation (4.9), to write this in terms of |G|. Solve your equation

for |G| and use this to prove |G| = 2.)
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Chapter 5

Generating Sets, Cyclic Groups
and Isomorphisms

In this chapter, we shall consider the important notion of cyclic groups.
This class of groups is particularly easy to treat and all relevant structural
properties of cyclic groups will be determined here something which is at
best quite difficult or hopeless, at the present time, for other large classes
of groups. We shall also discuss in this section the concept of isomorphic
groups.

5.1 Generators and isomophisms

Let G be an arbitrary group, let S be a complex of G, and let {Hα}α∈Λ be
the collection of all subgroups of G which contain S, i.e., S ⊂ Hα for all
α ∈ Λ. The collection, {Hα}α∈Λ, is clearly not empty since G itself is a
subgroup which contains S. We denote the intersection of all subgroups of
G containing S by gpG(S). That is

gpG(S) = ∩α∈ΛHα,

or

gpG(S) = ∩S⊂H≤GH.

(When it is clear that G is the group being considered, we use gp(S).) From
exercise 6 for Chapter 2, we have gp(S) ≤ G. From its very definition, we
have S ⊂ gp(S) and gp(S) is contained in any other subgroup which contains

55
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S. In this sense, gpG(S) is the smallest subgroup of G containing S. We call
gp(S) the group generated by S.

Proposition 5.1.1. Let G be a group, S a complex of G, and let E be the
set of all finite products of elements of S and their inverses (including single
elements of S). Then gp(S) = E.

Proof: It is readily seen that E is a subgroup of G (see exercise 1 for
this section) and S ⊂ E. Thus gp(S) ⊂ E. However, since gp(S) ≤ G and
S ⊂ gp(S), gp(S) must certainly contain all finite products of elements of S
and of inverses of elements of S, i.e., E ⊂ gp(S). Thus E = gp(S). �

Let us consider some examples.

Example 5.1.2. Proposition 5.1.1 shows that in S4, gp({(1, 2, 4), (2, 3, 4)}) =
gp({(1, 2, 3), (1, 2)(3, 4)}). To see this, we note that

(1, 2, 4) = (1, 2, 3)(1, 2)(3, 4)(1, 2, 3),

(2, 3, 4) = (1, 3, 2)(1, 2)(3, 4) = (1, 2, 3)−1(1, 2)(3, 4),

which shows gp({(1, 2, 4), (2, 3, 4)}) ⊂ gp({(1, 2, 3), (1, 2)(3, 4)}). To get the
reverse inclusion, we note that

(1, 2, 3) = (1, 2, 4)(2, 3, 4),

(1, 2)(3, 4) = (2, 3, 4)(1, 4, 2) = (2, 3, 4)(1, 4, 2)−1.

�

We now turn our attention to the important case for this chapter. If
S = {a}, then we shall write 〈a〉 for gp({a}); and 〈a〉 will be referred to as
the cyclic subgroup generated by a. The group G itself is called cyclic
(or a cyclic group) if there exists an a ∈ G such that G = 〈a〉, and such an
element a is called a generator of G.

Example 5.1.3. The set of integers Z under ordinary addition is cyclic
generated by 1. (Note that −1 is also a generator. Also recall that when the
operation is addition, 1n is interpreted as n · 1 = 1 + 1 + ... + 1 (n times),
when n > 0, and as n ·1 = (−1)+(−1)+ ...+(−1) (|n| times), when n < 0.)
�
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Example 5.1.4. If G is the group of example 2.1.11, then G is cyclic and
G = 〈ζn〉, where ζn is what is called a primitive nth root of unity. If
one recalls that eiθ = cos(θ) + i sin(θ) (Euler’s Formula), then we can take
ζn = e2πi/n. We should note that this example gives us a cyclic group of order
n for every positive integer n.

This group is the same as that in Example 2.1.11. �

Before proceeding further in our discussion of cyclic groups, it will be
convenient to introduce the notion of isomorphic groups.

Definition 5.1.5. Two groups G1 and G2 are said to be isomorphic if there
exists a mapping

f : G1 → G2

such that

(1) f is 1-1 and onto,

(2) f(ab) = f(a)f(b), for all a, b ∈ G.

The second condition is sometimes referred to by saying that “f preserves
the group operation.” Also it should be noted, we have designated the oper-
ation in a multiplicative fashion (or juxtapositive) in both groups; although
we warn the reader that the elements of G1 and G2 might be of an entirely
different nature, as well as the operations defined between them. Neverthe-
less from an abstract point of view, isomorphic groups are indistinguishable.
In other words, if G1 and G2 are isomorphic, then any relationship involving
the binary operation holding for elements of one of the Gi (i = 1, 2) holds for
the corresponding elements under the mapping for the other Gi (i = 1, 2).
For example, suppose f : G1 → G2 satisfies the conditions of Definition 5.1.5,
i.e., G1 and G2 are isomorphic. Then if G1 is abelian, G2 must be abelian.
If e1 is the identity of G1, then f(e1) = e2 is the identity of G2 (see exercise
3 for this section). If an = e1 in G1, then f(a)n = f(an) = f(e1) = e2,
etc. Thus although their elements might be quite different, G1 and G2 are
abstractly indistinguishable.

A mapping f satisfying the conditions of Definition 5.1.5 is called an
isomorphism of G1 onto G2. If G1 and G2 are isomorphic, we will write
G1

∼= G2. What we have noted above in words is that an isomorphism takes
an identity into an identity, an element of order n into an element of order
n (this is somewhat stronger than just saying an = e1 implies f(a)n = e2.
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Why?), etc. We also note that if we have the Cayley table for G1, then we
can use f to write the Cayley table for G2 since f preserves the operation.

Example 5.1.6. Consider C the additive group of all complex numbers and
the subgroup Ĉ of the group Cn of example 2.1.14 of all n-tuples of the form
(α, 0, ..., 0), α ∈ C. Clearly the mapping

C → C

α 7−→ (α, 0, ..., 0).

is an isomorphism of C onto Ĉ, or C ∼= Ĉ. (Verify this for yourself !) �

5.1.1 Exercises

1. Let G be a group and S a complex of G. Let E be the set of all finite
products of elements and of inverses of elements of S. Prove: E ≤ G.

2. Show that the relation of being isomorphic, ∼=, on the class of all groups
is an equivalence relation. Describe the equivalence classes of ∼=.

3. Let f : G1 → G2 be an isomorphism of the group G1 onto the group
G2. Let ei be the identity of Gi (i = 1, 2). Prove

(a) f(e1) = e2,

(b) f(a−1) = f(a)−1 for all a ∈ G1.

HINT: For (a), apply f to both sides of e1e1 = e1. For (b) use (a) together

with the definition of inverse.)

4. Prove that any group of prime order is cyclic.

(Note: If G = 〈a〉 is a finite cyclic group, |G| = o(a) - see Property 10 of

the elementary properties of groups from Chapter 2.)

5. (a) Show that the group Zn of problem 4 for Section 4.3 is cyclic of
order n.

(b) Show that Zn
∼= G where G is the group of Example 5.1.3. (You

must show your map is well-defined!)

6. Let G be a group of order pq, where p and q are primes such that p < q.
Prove that G does not contain two distinct subgroups of order q.

HINT: Use a proof by contradiction using Theorem 4.3.6 and problem 4

above.
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5.2 Cyclic Groups

Now we return to the case of G = 〈a〉, a cyclic group. Clearly, G = {an | n ∈
Z}. If G is finite, then of course o(a) must be finite, say o(a) = n. Then
recalling our discussion of elements of finite order (see Property 10 from
Chapter 2),

G = {e, a, a2, ..., an−1}.

Thus we see |G| = o(a) in this case.

Next, let G1 = 〈a〉 and G2 = 〈b〉 be two infinite cyclic groups. Consider
the mapping given by f(an) = bn (n = 0, 1, 2, ...). This mapping is well-
defined since G1 is an infinite cyclic group generated by a (all powers of a
are distinct since G1 is infinite) and f is onto G2. Also, so f preserves the
operation. Finally if f(an) = f(am) then bn = bm. Since G2 is infinite cyclic,
generated by b, however, this implies n = m; hence an = am. Thus f is an
isomorphism mapping G1 onto G2 and so G1

∼= G2. We have shown that
any two infinite cyclic groups are isomorphic. We note that since Z, the
additive group of integers, is infinite cyclic generated by ±1, we have proven
any infinite cyclic group is isomorphic to Z.

Next suppose thatG1 = 〈a〉 andG2 = 〈b〉 are finite cyclic groups such that
|G1| = |G2| = n. Then G1 = {e, a, a2, ..., an−1}, and G2 = {e, b, b2, ..., bn−1}.
Define again by f(ak) = bk. To show that f is well-defined, we note that if
at = am, with t ≥ m say, then at−m = e and therefore o(a) = n|(t−m) (again
see Property 10 Chapter 2). Therefore bt−m = e, since o(b) = n|(t−m), and
bt = bm. Thus f is well-defined. The rest of the justification needed to show
f is an isomorphism of G1 ontp G2 is left as an exercise (see exercise 1 for
this section). Hence G1

∼= G2. This shows that any finite cyclic group of
order n is isomorphic to µn (see Example 5.1.4).

As our next consideration, we wish to determine the subgroups of a cyclic
group. Suppose that G = 〈a〉 is a cyclic group and let H 6= {e} be any
subgroup of G. Let t be the smallest positive integer such that at ∈ H ; such
a t exists because H must contain at least one positive power of a. For if
ak ∈ H and ak 6= e then either k > 0 or k < 0. If k > 0, we have a positive
power of a in H , i.e., ak. If k < 0, then a−k = (ak)−1 ∈ H and again we
have a positive power of a in H , i.e., a−k. We claim that H = 〈at〉. For
suppose that x ∈ H . Then x = am for some integer m since H ≤ G = 〈a〉.
By the Division Algorithm, m = qt + r, 0 ≤ r < t. Then am = aqtar and
since ar = ama−qt ∈ H . This implies by the minimality of t, that r = 0 and
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m = qt. So x = am = (at)q, i.e., H = 〈at〉. Therefore we have shown that
any subgroup of a cyclic group is also cyclic.

Now suppose that G = 〈a〉 is an infinite cyclic group. We claim that
G has infinitely many subgroups. If t is any positive integer, then H =
〈at〉 = 〈a−t〉 ≤ G. Let t1 6= t2 be positive integers. If 〈at1〉 = 〈at2〉 then we
could write at2 = amt1 for some m ∈ Z and and at1 = ant2 for some n ∈ Z.
Hence at2 = amt1 = amnt2 . But o(a) = ∞, thus m,n = ±1, and at2 = a±t1 .
Again since a has infinite order and since t1 and t2 are positive, we must
have t2 = t1. The only way to avoid this contradiction is to conclude that
the hypothesis 〈at1〉 = 〈at2〉 is false. In other words, we have shown that if
t1 6= t2 then 〈at1〉 6= 〈at2〉. This proves the claim.

Suppose next that G = 〈a〉, and |G| = n. If H 6= {e} is a subgroup,
then we know, H = 〈at〉, where t is the smallest positive integer such that
at ∈ H . We claim that in this case t|n. For an = e ∈ H , so n = qt by our
earlier argument on the minimality of t (in the paragraph above where we
showed any subgroup of a cyclic group is also cyclic). Conversely if t is a
positive integer such that t|n, then H = 〈at〉 ≤ G. Moreover if t1 and t2 are
positive integers such that t1 6= t2 and t1|n and t2|n then 〈at1〉 6= 〈at2〉. For
otherwise (i.e., assume instead that 〈at1〉 = 〈at2〉), we must have at1 = aqt2

and at2 = akt1 . Thus n|(t1 − qt2), but t2|n so t2|(t1 − qt2), so t2|t1. Similarly
t1|t2 and so since t1, t2 > 0 we must have t1 = t2, a contradiction.

Summarizing, we see that for a finite cyclic group G = 〈a〉, with o(a) = n,
then any subgroup H of G is of the form 〈at〉, where t > 0 and t|n. Moreover,
for each positive t dividing n, there is such a subgroup. Also distinct divisors
determine distinct subgroups. Finally since for a positive divisor d of n one
has (at)d = e if and only if n|td if and only if (n/t)|d, we conclude from
Property 10 that |H| = o(at) = n/t, as t runs through the positive divisors
of n. Of course, if t goes through all the positive divisors of n, so does n/t.
Also note that the trivial subgroup {e} = 〈a0〉. Thus in the case of cyclic
groups of finite order, the converse of Lagrange’s theorem is true, viz, for
each d|n, d > 0, there exists a (cyclic) subgroup of order d. Moreover, in this
case there is precisely one such subgroup (see exercise 2 for this section).

The converse of Lagrange’s Theorem is not true in general, i.e., if |G| = n
and d|n, d > 0, there need not exist a subgroup of order d. The smallest
example is the group A4 of order 12; it turns out that A4 has no subgroup
of order 6. This will be left as an exercise (see exercise 4 for section 6.2)
after more tools are developed to handle it efficiently. We shall meet further
instances of this and will point it out for specific cases later. We point out
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now that it was no accident that the divisor was taken to be composite, i.e.,
not a prime, for prime divisors or for prime power divisors for that matter,
there must exist subgroups of such orders. These matters will be attended
to when we discuss the Sylow theorems.

Let us now summarize our results for cyclic groups.

Theorem 5.2.1. (a) Any two infinite cyclic groups are isomorphic (to Z).

(b) Any two finite cyclic groups of the same order are isomorphic (to some
µn, n ≥ 1 - see Example 5.1.4).

(c) Any subgroup of a cyclic group is cyclic. In particular if H ≤ G = 〈a〉
and H 6= {e}, then H = 〈at〉, where t is the smallest positive integer
such that at ∈ H.

(d) For an infinite cyclic group G = 〈a〉, and for each positive t, H =
〈at〉 ≤ G, and distinct positive t’s determine distinct subgroups.

(e) If G = 〈a〉 is a finite cyclic group of order n, then the t in part (c)
divides n. Moreover to each positive divisor of n there is one and only
one cyclic subgroup of that order.

We shall see presently that (e) really characterizes finite cyclic groups,
but first we establish an extremely useful theorem, which will be used many
times. L

Theorem 5.2.2. Let G be an arbitrary group and let a G such that o(a) = m.
Then o(ak) = m/gcd(m, k).

Proof: Let t = o(ak). Then akt = (ak)t = e which implies that m|kt (see
Property 10 of elementary properties of groups, in chapter 2). Now write
(see Corollary 1.2.7)

m = gcd(m, k)m′, k = gcd(m, k)k′,

where gcd(m′, k′) = 1. Hence,

gcd(m, k)m′|gcd(m, k)k′t,

or m′|k′t. because of Theorem 1.2.8 and the fact that gcd(m′, k′) = 1,
we have m′|t. But m′ = m/gcd(m, k), so m

gcd(m,k)
|t. Now (ak)m/gcd(m,k) =
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(am)k/gcd(m,k) = e. Thus t|(m/(gcd(m, k)). Therefore combining these two
results, o(ak) = t = m/gcd(m, k). �

We apply the theorem immediately to the case of a finite cyclic group G of
order n. Let G = 〈a〉 = {e, a, ..., an−1}. By the theorem o(ak) = n/gcd(n, k).
Thus o(ak) = n (and ak is consequently also a generator of G) if and only if
gcd(n, k) = 1. In other words, if G is a cyclic group of order n, then G has
φ(n) generators, where φ is the Euler φ-function. Summarizing, we have the
following result.

Corollary 5.2.3. Suppose G = 〈a〉 and |G| = n. Then ak is a generator of
G if and only if k and n are relatively prime. Thus there are φ(n) generators
of G.

Using the same notation as before, for G a cyclic group with |G| = n,
let us see which elements, ak, of G are of order d. Again by Theorem 5.2.4,
o(ak) = d if and only if d = n/gcd(n, k). Thus gcd(n, k) = n/d. In which
case, we can write n = n

d
d, k = n

d
i, where gcd(d, i) = 1. Thus the elements

of order d are those of the form a
n
d

i, where gcd(i, d) = 1. and 0 < i ≤ d− 1
since k ≤ n − 1. There are then, of course, φ(d) elements of order d. Since
|G| = n, we have

∑

d|n

φ(d) = n, (5.1)

an interesting number theoretic relationship involving the φ-function.
We shall make use of (5.1) directly in the following theorem. The author

is indebted to W. Wardlaw for pointing this theorem out to him. (Also see
[R].)

Theorem 5.2.4. If |G| = n and if for each positive d such that d|n, G has
at most one cyclic subgroup of order d, then G is cyclic (and consequently,
has exactly one cyclic subgroup of order d).

Proof: For each d|n, d > 0, let ψ(d) = the number of elements of G of
order d. Then

∑

d|n

ψ(d) = n.

Now suppose that ψ(d) 6= 0 for a given d|n. Then there exists an a ∈ G of
order d which generates a cyclic subgroup, 〈a〉, of order d, of G. We claim
all elements of G of order d are in 〈a〉. Indeed, if b ∈ G with o(b) = d and
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b /∈ 〈a〉, then 〈b〉 is a second cyclic subgroup of order d, distinct from 〈a〉.
This contradicts the hypothesis, so the claim is proven. Thus, if ψ(d) 6= 0,
then ψ(d) = φ(d). In general, we have ψ(d) ≤ φ(d), for all positive d|n. But
n =

∑

d|n ψ(d) ≤ ∑

d|n φ(d), by our previous work. It follows, clearly, from

this that ψ(d) = φ(d) for all d|n. In particular, ψ(n) = φ(n) ≥ 1. Hence,
there exists at least one element of G of order n; hence G is cyclic. This
completes the proof. �

Corollary 5.2.5. If in a group G of order n, for each d|n, the equation
xd = 1 has at most d solutions in G, then G is cyclic.

Proof: The hypothesis clearly implies that G can have at most one cyclic
subgroup of order d since all elements of such a subgroup satisfy the equation.
So Theorem 5.2.4 applies to give our result. �

We have given a few applications along the way in this section and the
preceding one of some of our results to number theory. We end this chapter
with one further application. In particular, we claim that Theorem 4.3.6 is
a generalization of Theorem 1.2.11, i.e., gcd(a, b) · lcm(a, b) = ab. Let us see
how this result follows from Theorem 4.3.6. We shall apply the theorem to
the case where G = 〈a〉 is a cyclic group of finite order. This frequently, as
we shall see in other instances, yields a number theoretic result as a special
case of a group theoretical result. Let s1, s2 be arbitrary positive integers.
Choose a positive integer n such that s1|n and s2|n. Then take G = 〈a〉
with o(a) = n. Let H1 = 〈as1〉 and H2 = 〈as2〉. Then from Theorem 5.2.2,
|H1| = n/s1, and |H2| = n/s2. It is not difficult to show (see exercise 3 for
this section) that

H1 ∩H2 = 〈alcm(s1,s2)〉, and H1H2 = 〈agcd(s1,s2)〉.

Thus Theorem 5.2.2 also implies that

|H1 ∩H2| = n/lcm(s1, s2) and |H1H2| = n/gcd(s1, s2).

Then Theorem 4.3.6 tells us that

n/gcd(s1, s2) =
(n/s1)(n/s2)

n/lcm(s1, s2)
,

which implies that lcm(s1, s2)gcd(s1, s2) = s1s2 as desired.



64CHAPTER 5. GENERATING SETS, CYCLIC GROUPS AND ISOMORPHISMS

5.2.1 Exercises

1. If G1 and G2 are finite cyclic groups such that |G1| = |G2| = n and
f : G1 → G2 is defined as in the text. Show f is 1-1, onto, and
operation preserving.

2. Let G = 〈a〉 with o(a) = n. Prove that G has a unique subgroup of
order d where d|n.

HINT: Let t = n/d then H = 〈at〉 is a subgroup of order d. Suppose H1 is

another subgroup of order d. Show H1 = H.

3. Let G = 〈a〉 with |G| = n. Let s1, s2 > 0 be integers such that
si|n (i = 1, 2). Suppose H1 = 〈as1〉 and H2 = 〈as2〉. Prove that
H1 ∩H2 = 〈alcm(s1,s2)〉 and H1H2 = 〈agcd(s1,s2)〉.
HINT: For the latter, use the fact that the gcd is a linear combination of s1

and s2, i.e., Theorem 1.2.3.)

4. Let G be a group and a ∈ G such that o(a) = mn where gcd(m,n) = 1.
Show that one can write a = bc where o(b) = m, o(c) = n, and bc = cb.
Moreover, prove the uniqueness of such a representation.

HINT: Write mx + ny = 1, let b = any, c = amx and use Theorem 5.2.2.

For uniqueness, show using mx + ny = 1, that if b and c satisfy the stated

conditions in the problem, then they must be given as stated in this hint.

5. Prove that a group of order pm, where p is a prime and m ∈ N, must
contain a subgroup of order p.

HINT: Use Theorem 5.2.1.

6. If in a group G of order n, for each positive d|n, the equation xd = 1
has less than d+ φ(d) solutions, then show G is cyclic.

HINT: Use the Corollary 5.2.3 and Theorem 5.2.4.

7. (W. Wardlaw) Prove that a finite group G is cyclic if and only if G
has no more than k k − th roots of 1 for every k ∈ N, where 1 is the
identity of G. .

HINT: A k − th root of 1 is a solution to xk = 1. Use Theorem 5.2.1 for

the only if part and the Corollary 5.2.5 for the if part.



Chapter 6

Factor Groups

In the first section, we shall consider special subgroups of a group called
normal subgroups which are quite important in all of group theory. We shall
see that normal subgroups enable us to construct new groups using the set
of cosets relative to these subgroups. Finally, the last section in this chapter
considers a class of groups which contains no proper normal subgroups. Such
groups are called simple groups. In recent years the problem of determining
(or classifying) all finite simple groups has received more attention from group
theorists than any other single problem. (See the article by D. Gorenstein
[G].) The simple groups are important because they play a role in finite group
theory somewhat analogous to that of the primes in number theory. As a
matter of fact, the classification of finite simple groups has been completed.
Its proof involves some 500 journal articles covering approximately 15,000
printed pages. In the words of D. Gorenstein this “... is unprecedented in
the history of mathematics ...”

6.1 Normal subgroups

Let G be an arbitrary group and suppose that H1 and H2 are subgroups of
G. We say that H2 is conjugate to H1 if there exists an element a ∈ G
such that H2 = aH1a

−1. It is easy to see, analogously to our consideration
of conjugate elements, that this is an equivalence relation on the set of all
subgroups of G. Thus one simply speaks of conjugate subgroups.

Analogous to the definition of the centralizer of an element a ∈ G, we

65



66 CHAPTER 6. FACTOR GROUPS

define normalizer of the subgroup H in G, denoted by NG(H) as follows:

NG(H) = {a ∈ G | aH = Ha}.

NG(H) is clearly a subgroup of G and H ⊂ NG(H). (When it is clear which
group we are working in, we may write N(H) for NG(H).)

The following theorem is analogous to Theorem 4.3.4. The proof, which is
the same except for notational changes, we leave to the reader as an exercise.

Theorem 6.1.1. Let H ≤ G, G a finite group. Then the number of subgroups
of G conjugate to H (i.e., the order of the equivalence class containing H) is
[G : NG(H)].

Next, we define the important notion of a normal subgroup.

Definition 6.1.2. A subgroup H of a group G is called a normal subgroup
of G if aHa−1 = H for all a ∈ G. We denote this by H ⊳G.

Thus H ⊳ G if and only if NG(H) = G. If G is abelian, then every
subgroup of G is normal. For an arbitrary group G, it is clear that G itself
and the trivial subgroup {e} are normal subgroups. In S3 it is not hard to
see that A3 is normal. In fact An ⊳Sn for all n ∈ N. This follows as a special
case of exercise 4 for this section. (It also follows by considering the parity
of gfg−1 for f ∈ An and g ∈ Sn.)

Suppose now that N ⊳G. If aN and bN are any two left cosets, then

(aN)(bN) = a(Nb)N = abN2 = abN (6.1)

which is a left coset. Here we have used the obvious fact that if N is normal
bN = Nb for all b ∈ G. Thus if N ⊳ G, we need not speak of left or right
cosets with respect to N because they are the same, so we can just talk
simply of a coset.

The converse of this statement given in (6.1) above is also true and has
been left as an exercise (see exercise 5 for this section). Namely, if H ≤ G is
such that (for all a, b ∈ G) aHbH = cH for some c ∈ G, i.e., the product of
any two left cosets is a left coset, then H ⊳G.

For the sake of examples and references, we include here a table for the
group A4 of even permutations on the set {1, 2, 3, 4}. Let

A4 = {f1, f2, ..., f12},
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where

f1 = (1), f2 = (1, 2)(3, 4), f3 = (1, 3)(2, 4), f4 = (1, 4)(2, 3),
f5 = (1, 2, 3), f6 = (2, 4, 3), f7 = (1, 4, 2), f8 = (1, 3, 4),
f9 = (1, 3, 2), f10 = (2, 4, 3), f11 = (2, 3, 4), f12 = (1, 2, 4).

The Alternating Group A4.
A4 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

f1 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

f2 f2 f1 f4 f3 f6 f5 f8 f7 f10 f9 f12 f11

f3 f3 f4 f1 f2 f7 f8 f5 f6 f11 f12 f9 f10

f4 f4 f3 f2 f1 f8 f7 f6 f5 f12 f11 f10 f9

f5 f5 f8 f6 f7 f9 f12 f10 f11 f1 f4 f2 f3

f6 f6 f7 f5 f8 f10 f11 f9 f12 f2 f3 f1 f4

f7 f7 f6 f8 f5 f11 f10 f12 f9 f3 f2 f4 f1

f8 f8 f5 f7 f6 f12 f9 f11 f10 f4 f1 f3 f2

f9 f9 f11 f12 f10 f1 f3 f4 f2 f5 f7 f8 f6

f10 f10 f12 f11 f9 f2 f4 f3 f1 f6 f8 f7 f5

f11 f11 f9 f10 f12 f3 f1 f2 f4 f7 f5 f6 f8

f12 f12 f10 f9 f11 f4 f2 f1 f3 f8 f6 f5 f7

Example 6.1.3. Let us consider the set V4 = {f1, f2, f3, f4}. Referring to
our table for A4, it is easy to see that V4 is a subgroup of A4. (Recall from
Exercise 4 in §4.2 that V4 is called the Klein 4-group.) We claim that V4⊳A4.
This can be shown by direct computation. (See exercise 7 for this section.)
However, here we just note that since conjugacy preserves cycle structure,
see Theorem 4.1.1, gV4g

−1 = V4 for all g ∈ A4, thus V4 ⊳ A4. �

We finally note that to show an arbitrary subgroup N ⊳ G it suffices to
show gng−1 ∈ N for all g ∈ G because of the following result.

Proposition 6.1.4. Let N ≤ G, G a group. Then if aNa−1 ⊂ N for all
a ∈ G, then aNa−1 = N . In particular, aNa−1 ⊂ N for all a ∈ G implies
N ⊳G.

(See exercise 5(a) for this section for the proof.)

6.1.1 Exercises

1. Prove that conjugacy is an equivalence relation on the set of all sub-
groups of a group. Describe the equivalence classes.
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2. Let G be a group and H ≤ G. Prove

(1) H ⊂ N(H),

(2) N(H) ≤ G.

3. Prove Theorem 6.1.1.

4. Prove that any subgroup of index 2 is a normal subgroup.

(HINT: Consider the partition in terms of left cosets and then in terms of

right cosets.)

5. Let G be a group and H ≤ G.

(a) Prove that aHa−1 ⊂ H for all a ∈ G implies aHa−1 = H .

(b) Suppose H has the property that the product of any two left cosets
of H is also a left coset of H ; then prove that H ⊳G.

(HINT: For (a) note that the condition must be true for a−1. For (b)

note that the product of aH and a−1H must be a left coset. Moreover

e ∈ aHa−1H. Then apply (a).)

6. Show that H = {1, (1, 2)} = 〈(1, 2)〉 is not a normal subgroup of S3.

7. Referring to the Cayley table for A4, let

V4 = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)},

i.e., V4 = {f1, f2, f3, f4}.
(a)Prove V4 ≤ A4.

(b) Write all the left cosets of V4 in A4 and then write all the right
cosets of V4 in A4.

(c) Use the result of (b) to show that V4 ⊳A4.

8. Let G be a group, N ⊳G, and H ⊳N . Does it follow that H ⊳G (i.e.,
is the relation of being a normal subgroup transitive)?

(HINT: Think of A4, V4, and 〈(1, 2)(3, 4)〉.)

9. Let G be a group and N ≤ G. Prove N ⊳G if and only if N consists
of complete conjugacy classes of all its elements, i.e., Cl(g) ⊂ N for all
g ∈ N .
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6.2 Factor groups

Again let N ⊳G and consider the set

{aN, bN, ...} (6.2)

of all cosets. This set will be denoted by G/N . We claim that a binary
operation can be introduced such that G/N with respect to this operation is
a group called the factor group (or quotient group) of G with respect to
N . Thus we define

aN · bN = (aN)(bN) = abN, (6.3)

i.e., we define the operation to be the ordinary product of complexes. The
operation is well-defined for if a′N = aN and b′N = bN , then, as we know
b′ = bn1 and a′ = an2 where n1, n2 ∈ N . Hence

a′b′N = an2bn1N = an2bN (6.4)

since n1 ∈ N . But b−1n2b = n3 ∈ N , since N is normal, so the right hand
side of (6.4) can be written as

an2bN = (ab)(b−1n2b)N = abn3N = abN. (6.5)

Thus (6.4) and (6.5) show that if N⊳G then a′b′N = abN , i.e., the operation
of coset multiplication defined in (6.3) is, indeed, well-defined.

The associative law is, of course, true because coset multiplication as
defined in (6.3) uses the ordinary group operation which is by definition
associative.

We claim N serves as the identity element of G/N . Indeed,

aN ·N = aN2 = aN,

and
N · aN = aN2 = aN.

The inverse of aN is a−1N since

aNa−1N = aa−1N2 = N.

Similarly a−1NaN = N .
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To emphasize: the elements of G/N are complexes (subsets) of G. If
|G| < ∞, then |G/N | = [G : N ], i.e., the member of cosets of N in G.
It is also to be emphasized that in order for G/N to be a group N must
be a normal subgroup of G. Again, if G is finite from Lagrange’s Theorem
[G : N ] = G/N , (see equation 4.9) thus

G/N = G/N (6.6)

As some of our examples will show, it is possible to have infinite G, infinite
N , but finite G/N .

We now consider some examples.

Example 6.2.1. Let 6Z = {..., 12, 6, 0, 6, 12, ...}, i.e., 6Z is the subgroup 〈6〉
of the group Z of integers under addition. Since Z is abelian, 6Z ⊳ Z. To
construct Z/6Z, we first find all the (left) cosets of 6Z in Z. Consider the
following 6 cosets:

0 + 6Z = {...,−12,−6, 0, 6, 12, ...},
1 + 6Z = {...,−11,−5, 1, 7, 13, ...},
2 + 6Z = {...,−10,−4, 2, 8, 14, ...},
3 + 6Z = {...,−9,−3, 3, 9, 15, ...},
4 + 6Z = {...,−8,−2, 4, 10, 16, ...},
5 + 6Z = {...,−7,−1, 5, 11, 17, ...}.

From the above, it is evident that Z = 6Z∪ (1+6Z)∪ ...∪ (5+6Z) (disjoint)
which shows that these are all the cosets of 6Z in Z. (This is also clear from
the Division Algorithm, for if n ∈ Z, then n = 6q+ r where 0 ≤ r < 6. Thus
n+6Z = 6q+ r+6Z = r+6Z. We also note that this shows that if [n] is the
equivalence class of n under the equivalence relation of congruence modulo 6
(see Section 1.2), then [n] = [r] = r + 6Z.) Now that we know the elements
of the factor group, we write its Cayley table

Z/6Z 0 + 6Z 1 + 6Z 2 + 6Z 3 + 6Z 4 + 6Z 5 + 6Z

0 + 6Z 0 + 6Z 1 + 6Z 2 + 6Z 3 + 6Z 4 + 6Z 5 + 6Z

1 + 6Z 1 + 6Z 2 + 6Z 3 + 6Z 4 + 6Z 5 + 6Z 0 + 6Z

2 + 6Z 2 + 6Z 3 + 6Z 4 + 6Z 5 + 6Z 0 + 6Z 1 + 6Z

3 + 6Z 3 + 6Z 4 + 6Z 5 + 6Z 0 + 6Z 1 + 6Z 2 + 6Z

4 + 6Z 4 + 6Z 5 + 6Z 0 + 6Z 1 + 6Z 2 + 6Z 3 + 6Z

5 + 6Z 5 + 6Z 0 + 6Z 1 + 6Z 2 + 6Z 3 + 6Z 4 + 6Z
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Here we note that since the group operation is +, (6.3) becomes (a+6Z)+
(b + 6Z) = (a + b) + 6Z. It is easy to see that |Z/6Z ∼= Z6. (See problem 4
for Section 5.2. As a matter of fact Z/6Z = Z6 from the above parenthesized
remark.) More generally, if n ∈ N and we let nZ = 〈n〉 = {0,±n,±2n, ...},
then Z/nZ = Zn. �

Example 6.2.2. Consider G = S3 and N = 〈(123)〉. As already remarked
〈(1, 2, 3)〉 = A3 = {(1), (1, 2, 3), (1, 3, 2)}⊳S3, and so |G/N | = 6/3 = 2. The
elements of G/N are N = 〈(1, 2, 3)〉 = {(1), (1, 2, 3), (1, 3, 2)} and (1, 2)N =
{(1, 2), (2, 3), (1, 3)}. The group G/N = {N, (1, 2)N} is a group of order 2
where the element (coset) N is the identity and (1, 2)N · (12)N = (12)2N =
N . �

Example 6.2.3. Let G = GL(n,R) and N = SL(n,R) (see Example 2.2.5).
If A ∈ G, B ∈ N , det(ABA−1) = detA detB(detA)−1 = 1. This implies
N ⊳ G. Then G/N = {AN | A ∈ G}. We claim that X ∈ AN if and only
if X = AB, where B ∈ N is such that the element AN of G/N consists
of all n × n matrices in G with the same determinant as A. Indeed, if
X = AB then det(X) = det(A) det(B) = det(A). It still remains to show
that if C ∈ GL(n,R) and det(C) = det(A), then C ∈ AN , i.e., the other
inclusion. (This is left as exercise 1 for this section). This proves the claim.
Thus G is the disjoint union G =

∐

AAN (disjoint), where the union is
taken over matrices A with different determinants. If we choose for each
nonzero real number α (α ∈ R − {0}) an Aα ∈ G such that det(Aα) = α
and let Λ = R − {0}, then G =

∐

α∈ΛAαN . Moreover, if α ∈ Λ and β ∈ Λ
are distinct then in G/N , (AαN)(AβN) = AαβN . As a matter of fact,
if we just think of Aα and Aβ as representatives of their respective cosets
(equivalence class representatives), then we can suppress the N , and think of
this multiplication in G/N as being given by AαAβ = Aαβ. �

When we create the factor group G/N , it is important to understand that
we are really defining every element of N to be the identity. This is apparent
from the previous example where we just suppressed the N . In Example
6.2.1, we are saying that any multiple of 6 is 0 in the factor group Z/6Z.
That is why 8 + 6Z = 2 + 6 + 6Z = 2 + 6Z, etc. In Example 6.2.2, we have
(1, 2)N = (2, 3)N , since (2, 3) = (1, 2)(1, 2, 3) in S3 and going to the factor
group makes (1, 2, 3) the identity. Group theorists often refer to the process
of creating the factor group G/N as “killing” N .
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Example 6.2.4. Let G = S4 and N = V4. We first note that for the same
reason as in Example 6.1.3, V4 ⊳S4 (i.e., gV4g

−1 = V4 for all g ∈ S4, Why?).
To construct S4/V4, we first find all the (left) cosets of V4 in S4. Consider
the following 6 = |S4/V4| = 4!/4 cosets:

V4 =
(1, 2, 3)V4 = {(1, 2, 3), (1, 3, 4), (2, 4, 3), (1, 4, 2)},
(1, 3, 2)V4 = {(1, 3, 2), (2, 3, 4), (1, 2, 4), (1, 4, 3)},
(1, 2)V4 = {(1, 2), (3, 4), (1, 3, 2, 4), (1, 4, 2, 3)},
(1, 3)V4 = {(1, 3), (2, 4), (1, 2, 3, 4), (1, 4, 3, 2)},
(2, 3)V4 = {(1, 4), (2, 4), (1, 3, 4, 2), (1, 2, 4, 3)}.

We can therefore write the Cayley table for S4/V4.

S4/V4 V4 (1, 2, 3)V4 (1, 3, 2)V4 (1, 2)V4 (1, 3)V4 (2, 3)V4

V4 V4 (1, 2, 3)V4 (1, 3, 2)V4 (1, 2)V4 (1, 3)V4 (2, 3)V4

(1, 2, 3)V4 (1, 2, 3)V4 (1, 3, 2)V4 V4 (1, 3)V4 (2, 3)V4 (1, 2)V4

(1, 3, 2)V4 (1, 3, 2)V4 V4 (1, 2, 3)V4 (2, 3)V4 (1, 2)V4 (1, 3)V4

(1, 2)V4 (1, 2)V4 (2, 3)V4 (1, 3)V4 V4 (1, 3, 2)V4 (1, 2, 3)V4

(1, 3)V4 (1, 3)V4 (1, 2)V4 (2, 3)V4 (1, 2, 3)V4 V4 (1, 3, 2)V4

(2, 3)V4 (2, 3)V4 (1, 3)V4 (1, 2)V4 (1, 3, 2)V4 (1, 2, 3)V4 V4

The reader should note that this table gives a non-abelian group of order
6. As a matter of fact, S4/V4

∼= S3, which can be seen immediately from the
above if we think of killing off V4. �

6.2.1 Exercises

1. Let G = GL(n,R) and N = SL(n,R) for n ≥ 1.

(a) Let A ∈ G and show that the coset AN = {X ∈ GL(n, ) | detX =
detA}.
(b) Let R× denote the group of non-zero real numbers with respect to
the usual multiplication. Show G/N ∼= R×.

(c) Is G/N ∼= G? Why or why not?

2. Let G = 〈a〉 be a cyclic group. Let H be any subgroup of G.
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(a) Show that H = 〈as〉, where s is an arbitrary positive integer if
|G| = ∞, while if |G| <∞, then s||G|.
HINT: Go back to §5.2 on cyclic groups.

(b) Explain why H⊳G. Show that G/H = {H, aH, ..., as−1H} = 〈aH〉
. In words this says, that a factor group of a cyclic group is cyclic.

3. Using your result from exercise 7 of Section 6.1, write the Cayley table
for A4/V4.

4. Prove that A4 has no subgroup of order 6.

HINT: Assume it does. Let H ≤ A4 with |H| = 6. Then H ⊳A4 (Why?). So

A4/H makes sense. Moreover, this also implies that f2 ∈ H for all f ∈ A4

(Why?). Now look at the table for A4 and count the number of squares to

come to a contradiction.) (Note this problem gives an example to show that

the converse of Lagrange’s Theorem is false.

6.3 Simple groups

For an arbitrary group, G, we recall that G and e are normal subgroups, if
these are the only ones we say the group is simple.

Definition 6.3.1. We say that a group G 6= {e} is simple provided that
N ⊳G implies N = G or N = {e}.

One of the most outstanding problems in group theory has been to give a
complete classification of all finite simple groups. In other words, this is the
program to discover all finite simple groups and to prove that there are no
more to be found. This was recently accomplished through the efforts of many
mathematicians. The end result of which is called by D. Gorenstein “The
Enormous Theorem,” as noted in the introduction to this chapter. Certainly
one trivial family of finite simple groups would be all groups of prime order
p, since by Lagrange’s Theorem the only subgroups of such groups are of
orders 1 and p (i.e., {e} and the whole group). We shall presently determine
a less trivial class of simple groups. There are other families of finite simple
groups, but their determination is beyond the scope of this book. One of
the easiest-to-state results in the proof of the “Enormous Theorem” was a
tremendous result in itself due to W. Feit and J.G. Thompson (see [FT]).
This result took a whole volume of the Pacific Journal of Mathematics (255
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pages) to prove; moreover, it is considered to have provided a great deal of
impetus to the study of the classification problem. What the Feit-Thompson
Theorem (as it is called) basically says (later we shall phrase it in a different
form) is that if G is a finite simple group and |G| is not of prime order then
G must be even. This settled an old conjecture of W. Burnside. In the words
of D. Gorenstein, “The complexity of the proof of this easily understood
statement (the Feit-Thompson Theorem) foreshadowed the extreme length
of the complete classification of the simple groups.”

Let us now turn to the main theorem of this section. First note that
A3 is simple, since |A3| = 3!/2 = 3. As Example 6.1.3 shows, A4 is not
simple. It contains a normal subgroup of order 4, viz, the Klein 4-group,
V4 = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}. However, we have the follow-
ing result.

Theorem 6.3.2. An is simple for n ≥ 5.

Proof: Let N⊳An where n ≥ 5. We want to show according to Definition
6.3.1 that if N 6= {e}, then N = An. In order to do this, we first show that
if N contains a single 3-cycle, i.e., a cycle of length 3, then N = An. Thus,
say (i, j, k) ∈ N . Observe that (2, i)(1, j) ∈ An if i 6= 2 and j 6= 1, and since
N ⊳ An,

(2, i)(1, j)(i, j, k)(2, i)−1(1, j)−1 ∈ N,

i.e. (2, 1, k) ∈ N (where we have used the fact that disjoint cycles commute).
Let f = (1, 2)(k,m) where m 6= 1, 2, k but otherwise m is an arbitrary integer
less than or equal to n. (This can be done since n ≥ 5.) Then f ∈ An and
since N ⊳ An,

f(2, 1, k)f−1 = (1, 2, m) ∈ N

also (1, 2, k) = (2, 1, k)2 ∈ N . Thus N contains all (1, 2, m) for 3 ≤ m ≤
n. By exercise 7, Section 3.2, these cycles generate An, so N = An, and
we are done. If i = 2 and j = 1, then immediately (2, 1, k) ∈ N , and
we proceed analogously. If i = 2 and j 6= 1, then (2, j, k) ∈ N , and so
(1, j)(k, j)(2, j, k)((1, j)(k, j))−1 = (2, k, 1) = (1, 2, k) ∈ N . Then we proceed
analogously. Finally if i 6= 2 and j = 1, a similar argument can be given (see
exercise 1 for this section).

Thus to complete the proof, all we must do is show that if N ⊳ An and
N 6= {e}, then N must contain a 3-cycle. To this end, choose an f ∈ N ,
f 6= (1), such that f leaves fixed a maximal number of the numbers 1, 2, ..., n.
Suppose f were not a 3-cycle, then there are just two cases:
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Case 1 f , in its representation as a product of disjoint cycles, contains a cycle
of length ≥ 3 and so must map more than 3 integers into images distinct
from their pre-images. In other words, f has a representation of the
form

f = (123...)(...)....

Moreover, f can’t be of the form (1, 2, 3, m) since this is an odd per-
mutation (WHY?) Thus f must map at least two integers > 3, say
4 and 5, into elements distinct from 4 and 5, respectively. Now let
g = (3, 4, 5) ∈ An. Then h = gfg−1 ∈ N , but h = gfg−1 =
g(1, 2, 3, ...)g−1g(...)g−1...g−1 (WHY?), and so h = (1, 2, 4...)(...).... Now
if j > 5 and f(j) = j, then clearly h(j) = j (since h = gfg−1), so
However, f−1h ∈ N , and f−1h(1) = 1. In other words, f−1h ∈ N ,
f−1h 6= (1) (WHY?), and f−1h leaves fixed more elements than f .
This contradicts the choice of f . Thus this case is eliminated.

Case 2 f , in its representation as a product of disjoint cycles, contains at least
2 distinct transpositions, i.e., f is of the form

f = (12)(34)...

Again, choose g = (3, 4, 5) ∈ An. Then as above

h = gfg−1 = (1, 2)(4, 5)....

As before f−1h ∈ N , and f−1h(j) = j if f(j) = j and j > 5. It is pos-
sible though here that f leaves 5 fixed, whereas f−1h(5) = 4. However
f−1h(1) = 1 and f−1h(2) = 2. Thus again f−1h 6= (1) (WHY?) and
has more fixed points than f , a contradiction.

Since the two cases exhaust the possible representations for f other than
f being a 3-cycle, we conclude that f must indeed be a 3-cycle, and by the
first part of the proof, we than get N = An. �

On the basis of this theorem and exercise 4 of Section 6.1, we can easily
get further examples which show the converse of Lagrange’s theorem is false.
For example, A5 = 5!/2 = 60, but A5 has no subgroup of order 30 for such a
subgroup would be normal, whereas we know A5 is simple.

We conclude this section and chapter with a nice application of factor
groups and of some of our earlier results (i.e., Theorem 6.3.4 obtained from
Proposition 6.3.3). With this in mind, we first prove the following result.
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Proposition 6.3.3. : If G is a group such that G/Z(G) is cyclic, then G is
abelian.

Proof: We will write Z = Z(G), the center of G. We first remark that
G/Z is defined since Z ⊳G (WHY?). Now since G/Z is a cyclic group, let’s
write G/Z = 〈aZ〉 for a ∈ G. Since

G = ∪n∈Za
nZ,

if g and h are any elements of G then g ∈ akZ and h ∈ amZ for integers
k,m. Thus g = akz1 and h = amz2 where z1, z2 ∈ Z. Then

gh = (akz1)(a
mz2) = akamz1z2 = (amz2)(a

kz1) = hg.

Hence G is abelian. �

We can now obtain our desired application, i.e.,

Theorem 6.3.4. A group of order p2 is abelian.

Proof: Let G be a group such that |G| = p2 and let Z = Z(G) be the
center of G. By Theorem 4.3.5, we know that Z is non-trivial. Thus from
Lagrange’s Theorem |Z| = p or = p2. If |Z| = p2, then G = Z = Z(G), and
so G is abelian. On the other hand if |Z| = p, then we consider G/Z. Now
|G/Z| = p2/p = p. Thus by exercise 4 of Section 5.1, G/Z is cyclic. Hence
G is again abelian by Proposition 6.3.3, and actually |Z| = p2. �

Actually one can prove more and also show that there are precisely two
non-isomorphic groups of order p2, but we shall not go into these enumeration
matters here.

6.3.1 Exercises

1. Suppose N ⊳ An for n ≥ 5 and that (i, j, k) ∈ N where i 6= 2 and
j = 1, show as in the proof of Theorem 6.3.2 that this again implies
that N = An.

2. Go through the proof of Theorem 6.3.2 and answer all the questions
asked there.

3. Use the main result of this section, i.e., Theorem 6.3.2, to give another
example, different from that in the text or in exercise 4 of Section 6.2,
showing the converse of Lagrange’s Theorem is false.



6.3. SIMPLE GROUPS 77

4. Let G be an abelian simple group. Prove |G| = p, p a prime. (It is not
assumed initially that G is finite.)

5. Let G be a non-abelian group s.t. |G| = p3. Prove |Z(G)| = p.

6. If |G| = pq, where p and q are not necessarily distinct primes, prove
|Z(G)| = 1 or = pq.
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Chapter 7

Homomorphisms

In this chapter, we consider a generalization of an isomorphism. In particular,
we consider mappings on groups called homomorphisms which preserve the
group operation. (They need not be 1-1 nor onto.) In the first section, we
discuss several easy consequences of the definition of homomorphism. We
also find that the important Fundamental Homomorphism Theorem is just
a consequence of some of our previous work. Finally, in the second section
we consider some special isomorphisms and homomorphisms.

7.1 Definition and Elementary Properties

We return to a consideration of mappings from one group to another.

Definition 7.1.1. Let G1 and G2 be two groups (both denoted multiplica-
tively) and let f : G1 → G2. The mapping f is called a homomorphism
if f(ab) = f(a)f(b) for all a, b ∈ G1. If f is an onto homomorphism, i.e.,
G2 = f [G1], then G2 is called a homomorphic image of G1.

In words, a homomorphism is just a map from one group to another which
preserves the operation. Let us consider two examples of homomorphisms:
the first rather general, the second quite specific.

Example 7.1.2. Let G be a group and N ⊳ G. Consider the canonical (or
natural) mapping κ of G onto G/N given by κ(a) = aN for all a ∈ G. κ is
clearly onto G/N , and

κ(ab) = abN = (aN)(bN) = κ(a)κ(b).

79
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Thus G/N is a homomorphic image of G. This example shows that a factor
group of a group is always a homomorphic image of the group. �

Example 7.1.3. Let G = Cn, as in Example 2.1.14. Map Cn to itself by

f : Cn → Cn

where f(α1, ..., αn) = (α1, 0, ..., 0). It is easy to see that f is a homomorphism
of Cn into itself (see exercise 1 for this section). �

We now consider some general properties of homomorphisms.

Theorem 7.1.4. Let f : G1 → G2 be a homomorphism. Then f [G1] ≤ G2.

Proof: Let e be the identity of G1. We have f(e) ∈ f [G1], so f [G1] 6= ∅.
Let f(a), f(b) ∈ f [G1]. Then f(a)f(b) = f(ab) ∈ f [G1]. But f(e) = f(e·e) =
f(e)f(e) which implies by cancellation that f(e) is the identity element of
G2. Finally, f(a)f(a−1) = f(aa−1) = f(e), so f(a)−1 = f(a−1) ∈ f [G1]. This
shows that f [G1] ≤ G2 by Definition 2.2.3. �

Let us remark that in the above proof we showed two other important
properties of a homomorphism. They are:

• f(e1) = e2, where ei is the identity of Gi (i = 1, 2),

• f(a−1) = f(a)−1, for every a ∈ G1.

Definition 7.1.5. Let f : G1 → G2 be a homomorphism, and let e designate
the identity of G1 as well as of G2. Let K = {a ∈ G1 | f(a) = e}. The set
K is called the kernel of f . We write Ker(f).

We shall presently show that if f : G1 → G2 is a homomorphism then
Ker(f) ⊳G1, but first we note the following basic property.

Theorem 7.1.6. f is 1-1 if and only if Ker(f) = {e}.

Proof: If f is 1-1, since f(e) = e, e can be the only element which maps
to e, i.e., Ker(f) = {e}. Conversely, if Ker(f) = {e}, then if f(a) = f(b),
we have f(a−1b) = f(a−1)f(b) = f(a)−1f(b) = e since f(a) = f(b). Thus
a−1b ∈ K = {e}. So a−1b = e, and a = b. �

Theorem 7.1.7. If f : G1 → G2 is a homomorphism then Ker(f) ⊳G1.
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Proof: We have already seen that e ∈ Ker(f). If a, b ∈ Ker(f), then
f(a) = e and f(b) = e, so f(ab) = f(a)f(b) = e; hence ab ∈ Ker(f). Also
f(a−1) = f(a)−1 = e−1 = e, i.e., if a ∈ Ker(f), then a−1 ∈ Ker(f). We have
so far shown thatKer(f) ≤ G1. To see that it is normal, suppose k ∈ Ker(f)
and a ∈ G. Then f(aka−1) = f(a)f(k)f(a−1) = f(a)ef(a)−1 = e. Therefore
k ∈ Ker(f) implies that aka−1 ∈ Ker(f). This says aKer(f)a−1 ⊂ Ker(f)
for all a ∈ G1. This is sufficient to show Ker(f)⊳G, according to Proposition
6.1.4. �

In the case of the canonical map κ : G → G/N (see Example 7.1.2),
κ(a) = N (the identity element of G/N) if and only if aN = N if and only
if a ∈ N . Thus Ker(κ) = N .

We observe (see exercise 2 for this section) that if G1, G2, G3 are groups
and if f1 : G1 → G2 and f2 : G2 → G3 are homomorphisms then f2f1 : G1 →
G3 is a homomorphism.

Suppose again that f : G1 → G2 is a homomorphism with K = Ker(f).
We observed, for general mappings in section 1.1 that there is associated
with f a factorization

G1
κ→ G1

g→ f [G1]
i→ G2,

such that f = igκ, κ is onto, g is 1-1 and onto, while i is an injection
mapping. Also recall that was a set of equivalence classes, determined by
the equivalence relation: a ∼ b if and only if f(a) = f(b). Consider the
equivalence class of a ∈ G1, namely [a]. Now b ∈ [a] if and only if b ∼ a if
and only if f(a) = f(b) if and only if f(a−1b) = e if and only if a−1b ∈ K if
and only if b ∈ aK. Thus [a] = aK and G1 is precisely G1/K and κ is the
canonical homomorphism. Thus we have

G1
κ→ G1/K

g→ f [G1]
i→ G2.

Now i, being an injection mapping, is an isomorphism of f [G1] into G2.
Finally we claim that g is an isomorphism of G1/K onto f [G1]. We know,
in general that g is 1-1 and onto, thus all that needs to be shown is that g
preserves the operation. Now g(aK) = f(a), recalling the definition of g, so

g(aKbK) = g(abK) = f(ab) = f(a)f(b) = g(aK)g(bK).

Consequently, we have f [G1] ∼= G1/Ker(f).
We have thus established the fundamental result stated below.
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Theorem 7.1.8. (Fundamental Homomorphism Theorem (FHT))

(I) If N ⊳G, a group, then G/N is a homomorphic image of G.

(II) If f : G1 → G2 is a homomorphism, then G1/Ker(f) ∼= f [G1]. In
particular, if G2 is a homomorphic image of G1, then G1/Ker(f) ∼= G2.

We note that the significance of this theorem is that it relates two seem-
ingly unrelated concepts, i.e., concepts of factor group and homomorphic
image. In particular, the FHT basically says that these two concepts coin-
cide.

Example 7.1.9. Let f : Z6 → Z3 defined by

(

0 1 2 3 4 5
0 1 2 0 1 2

)

. It is not

hard to verify that f is a homomorphism of Z6 onto Z3. Ker(f) = {0, [3]}
is the subgroup of Z6 generated by [3], i.e., 〈[3]〉. (Here [a] is in the notation
of Exercise # 4 in §4.3.) FHT implies Z6/〈[3]〉 ∼= Z3. We note that this
example could also have been given as follows: Let f : Z/6Z → Z/3Z defined
by f(i+6Z) = i+3Z for any i ∈ Z. The reader should verify again that this
is a homomorphism, find its kernel and state the conclusion of FHT in this
case. �

7.1.1 Exercises

1. Prove that the map in Example 7.1.3 is a homomorphism.

2. Let G1, G2, G3 be groups. Suppose f1 : G1 → G2 and f2 : G2 → G3 are
homomorphisms. Then show f2f1 : G1 → G3 is also a homomorphism.

3. Verify that the mapping defined in Example 7.1.9 is a homomorphism.
In the second case, i.e., the map f : Z/6Z → Z/3Z, show f is well-
defined, f is a hom, find Ker(f), and state the conclusion of the FHT
for this f .

4. Verify that f : R → C defined by f(x) = cos(2πx) + i sin(2πx) (=
e2πix) is a homomorphism of the additive group of R onto the group
of all complex numbers of absolute value 1. (Recall if z = a + bi,
|z| =

√
a2 + b2.) What is Ker(f)? State the conclusion of the FHT for

this map.
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7.2 Special Homomorphisms and Isomorphisms

We conclude this chapter with some considerations of special homomorphisms
and isomorphisms. First we define the notion of an endomorphism. A ho-
momorphism

f : G→ G

of a group into itself is called an endomorphism. An isomorphism of a
group G onto itself is called an automorphism. For example, the mapping
of the additive group of complex numbers C, given by z 7−→ z, the complex
conjugate, is an automorphism of C (see exercise 1 for this section).

Let G be a given group. We denote by Aut(G) the set of all automor-
phisms of G. This set is a group with respect to the binary operation of
composition of mappings: For clearly 1G ∈ Aut(G) and is the identity ele-
ment. The associative law is true for mappings with respect to composition
and if f ∈ Aut(G) then f−1 exists and f−1 ∈ Aut(G) since

f−1(ab) = f−1(ff−1(a)ff−1(b))
= f−1(f(f−1(a))f(f−1(b)))

= f−1(a)f−1(b),

since composition is represented by juxtaposition. Is this sufficient to show
Aut(G) is a group with respect to composition? WHY or WHY NOT? (See
exercise 3 for this section.)

Now we consider special kinds of automorphisms of a group G. Let a ∈ G,
and consider the mapping φa : G→ G defined by φa(x) = axa−1. We contend
that φa ∈ Aut(G). We leave it as an exercise to show φa is 1-1 and onto.
We note φa(xy) = axya−1 = (axa−1)(aya−1) = φa(x)φa(y), and so φa is an
automorphism of G. It is called the inner automorphism determined by
a.

For future reference, we note here the following result.

Proposition 7.2.1. Let G be a group, H ≤ G, and a ∈ G. Then aHa−1 ≤
G.

Proof: Since the inner automorphism φa : G → G is a homomorphism,
we can apply Theorem 7.1.4 to imply that the image of H under a, i.e.,
φa[H ] = aHa−1, is a subgroup of G. In words, Proposition 7.2.1 says that
the conjugate of a subgroup is a subgroup. �
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All elements of Aut(G) (if there are any) which are not inner automor-
phisms are called outer automorphisms. Let us denote the set of all inner
automorphisms of G by Inn(G). We claim that Inn(G) ⊳Aut(G). To show
this, we consider the mapping ψ of G into Aut(G) given by a 7−→ φa, i.e.,

ψ(a) = φa. (7.1)

It is obvious that φa is onto Inn(G). Also ψ(ab)φab, but

φaφ(x) = φa(φb(x))
= φa(bxb

−1)
= a(bxb−1)a−1

= (ab)xb−1a−1

= (ab)x(ab)−1

φab(x).

Thus φab = φaφb so the mapping ψ preserves the operation, i.e., ψ is a
homomorphism. Theorem 7.1.4 implies that the image at Inn(G) = ψ[G] is
a subgroup of Aut(G). Now let f ∈ Aut(G). Then

fφaf
−1(x) = f(af−1(x)a−1)

= f(a)f(f−1(x)f(a)−1)
= f(a)xf(a)−1

= φf(a)(x),

i.e., fφaf
−1 = φf(a) ∈ Inn(G). Thus Inn(G) ⊳Aut(G).

Finally, let us consider the kernel, Ker(ψ), of the homomorphism given
in (7.1). Let K = Ker(ψ). Now K consists of those and only those elements
a ∈ G such that φa = 1G, i.e., φa(x) = 1G(x) = x, for all x ∈ G. In other
words,

φa(x) = axa−1 = x,

for all x ∈ G. Thus K = Z(G), the center of G. Thus the FHT (Theorem
7.1.8) implies that

Inn(G) ∼= G/Z(G).

We have therefore established the following result.

Theorem 7.2.2. The set Inn(G) of all inner automorphisms of a group
G is a normal subgroup of the group Aut(G) of all automorphisms of G.
Moreover, Inn(G) ∼= G/Z(G).
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7.2.1 Exercises

1. Prove that the map z 7−→ z, where z = a + bi, z = a − ib is an
automorphism of C under +.

2. In the text, we did not show that Aut(G) was closed with respect to
composition, i.e., that composition is a binary operation on Aut(G).
Show it. (You may use the result of exercise 2 for Section 7.1.)

3. For an arbitrary group G, let a ∈ G and define φa(x) = axa−1 for
all x ∈ G. Show φa is a 1-1 and onto map of G onto G. Finally
show that φa preserves the group operation. This exercise shows that
φa ∈ Aut(G) (φa is the inner automorphism determined by a.)

4. Show that if G is a group with trivial center (Z(G) = {e}), then its
group of automorphisms, Aut(G), is also a group with trivial center.

(HINT: Let f ∈ Z(Aut(G)). For any x ∈ G, let φx ∈ Inn(G). Then fφx =

φxf (Why?). Use this to show that for any y ∈ G, x−1f(x) ∈ CG(f(y)).

Infer the result from this.)
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Chapter 8

Solvable Groups, Double Cosets
and Isomorphism Theorems

We shall consider in this chapter a number of concepts which play an ex-
tremely important role in algebra in general. Here, for the most part, the
theorems established will be introductory, and will subsequently be used to
establish much deeper theorems. We shall begin with a discussion of a spe-
cial class of groups called solvable groups. Later, we shall return to such
groups, and we shall then give an alternate characterization of them and
prove more properties related to solvable groups. This name comes from the
fact that solvable groups are used in a subject called Galois Theory (also a
part of algebra but not treated here) to determine whether or not a polyno-
mial equation is solvable in terms of taking n − th roots; i.e., to determine
whether or not a formula for the roots of a polynomial like the quadratic
formula (case n = 2) can be found. If such a formula can be found, we say
the polynomial equation is solvable by radicals. It turns out that not all
polynomial equations of degree ≥ 5 are solvable are by radicals. The reason
for this is that the symmetric group Sn is not a solvable group for n ≥ 5 (cf.
Theorem 6.3.2).

We also discuss in the final section the so called correspondence theorem
and two of the three isomorphism theorems. These theorems describe re-
lationships between factor groups, normal subgroups, and homomorphisms.
The reader should be cautioned that neither the numbering nor the content
of these theorems is standard. So, for example, what is called the second
isomorphism theorem here may be called the third isomorphism theorem in
another text. Also some authors include what we have called the Funda-

87
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mental Homomorphism Theorem (Theorem 7.1.8) as one of the isomorphism
theorems. It should also be pointed out that analogs of these theorems are
true for almost every type of algebraic system. (Examples where these hold
other than groups, which the reader may be familiar with, are vector spaces.)

8.1 Commutators and solvable groups

We begin our discussion with the following basic notion.

Definition 8.1.1. Let G be a group and let a, b ∈ G. The product aba−1b−1

is called the commutator of a and b. We write [a, b] = aba−1b−1.

Clearly [a, b] = e if and only if a and b commute.

Definition 8.1.2. Let G′ be the subgroup of G which is generated by the set
of all commutators of elements of G, i.e., G′ = gp({[x, y] | x, y ∈ G}). G is
called the commutator (or derived) subgroup of G.

If we recall our discussion on the subgroup generated by a subset of a
group G, then we know that G′ consists of all finite products of commutators
and inverses of commutators. (See Proposition 5.1.1.) However, the inverse of
a commutator is once again a commutator (see exercise 1 for this section). It
then follows that G is precisely the set of all finite products of commutators,
i.e., G is the set of all elements of the form

h1h2...hn

where each hi is a commutator of elements of G.
The following proposition shows that the commutator subgroup is always

normal.

Proposition 8.1.3. If G is a group, then G′ ⊳G.

Proof: If h = [a, b] for a, b ∈ G, and x ∈ G, xhx−1 = [xax−1, xbx−1] is
again a commutator of elements of G. Now from our previous comments, an
arbitrary element ofG′ has the form h1h2...hn, where each hi is a commutator.
Thus x(h1h2...hn)x−1 = (xh1x

−1)(xh2x
−1)...(xhnx

−1) and since by the above
each xhix

−1 is a commutator x(h1h2...hn)x−1 ∈ G′. Using Proposition 6.1.4,
we have proven G⊳G. �
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We next contend that the factor group G/G′ is an abelian group and that
actually G′ is the smallest normal subgroup that enjoys this property. (Note
that if G is a finite group and if |N | > |G′|, where N ⊳ G such that G/N is
abelian, then |G/G′| > |G/N |, so we are actually discovering the “largest”
abelian homomorphic image of G.)

Theorem 8.1.4. G/G′ is an abelian group. Moreover, if N ⊳ G such that
G/N is abelian, then G′ ⊂ N .

Proof: In order to establish the first part of the theorem, let aG′ and bG′

be any two elements of G/G′. Then

[aG′, bG′] = aG′ · bG′(aG′)−1(bG′)−1

= aG′ · bG′a−1G′ · b−1G′

= aba−1b−1G′

= G′,

since [a, b] ∈ G′. In other words, any two elements of G/G′ commute (recall
that in the factor group G/G′, G′ functions as the identity element). Hence
G/G′ is abelian.

Next let N⊳G. If N does not contain G′, then N certainly cannot contain
all commutators of elements of G (recall that the group generated by a set
is the smallest subgroup containing that set - see §5.1). Thus let a, b ∈ G
be such that [a, b] /∈ N . Then [aN, bN ] = aba−1b−1N = [a, b]N 6= N . Hence
G/N is non-abelian. Taking the contrapositive completes the proof. �

In general, we know (see exercise 8 for Section 6.1) that a normal subgroup
of a normal subgroup need not be normal in the whole group. However, the
following theorem shows that in the special case of the commutator subgroup
of a normal subgroup, we can state that this is normal in the entire group.

Theorem 8.1.5. Let N⊳G, a group, and let N ′ be the commutator subgroup
of N . Then N ′

⊳G.

Proof: Let c = [a, b] where a, b ∈ N . Then for an arbitrary x ∈ G, we
have

xcx−1 = xaba−1b−1x−1

= (xax−1)(xbx−1)(xa−1x−1)(xb−1x−1)
= (xax−1)(xbx−1)(xax−1)−1(xbx−1)−1

= [xax−1, xbx−1].
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Since N ⊳ G, xax−1 and xbx−1 ∈ N , we have xcx−1 ∈ N , where c was an
arbitrary commutator of elements of N . It follows directly from this that
N ⊳G (WHY?). �

We consider next the following sequence of subgroups of an arbitrary
group G:

... ⊂ G′′′ ⊂ G′′ ⊂ G′ ⊂ G, (8.1)

where G′′ is the commutator subgroup of G′, G′′′ is the commutator subgroup
of G′′, etc.

Definition 8.1.6. If the above sequence of subgroups of a group G given
in (8.1) contains the trivial subgroup, i.e., {e}, then the group G is called
solvable.

If G is abelian, then G = {e}, and so an abelian group is solvable. The
converse is false, e.g., S3 can be shown to be solvable (see exercise 2 for this
section), but of course S3 is non-abelian. We also observe that An for n ≥ 5 is
not solvable. We have A′

n = An, for n ≥ 5, since by Theorem 6.3.2 we know
that An is simple (and non- abelian) for n ≥ 5. We mention in passing that
the Feit-Thompson Theorem alluded to earlier (see the beginning of Section
6.3) states: Any group of odd order is solvable.

8.1.1 Exercises

1. Prove that the inverse of a commutator is a commutator.

2. Let G be a group and G′ be its commutator subgroup. Prove: G is
abelian if and only if G′ = {e}.

3. Write the element (1, 2, 3) ∈ S3 as a commutator of elements of S3.

4. We can define the sequence of subgroups, called the derived series,
inductively as follows:

G(n+1) ⊂ G(n) ⊂ ... ⊂ G′′ ⊂ G′ ⊂ G, (8.2)

where G′ = G(1) is the commutator subgroup of G, and G(i+1) is the
commutator subgroup of G(i), for i > 0. Prove that every term in the
derived series, (8.2) above, is normal in G. (HINT: Theorem 8.1.5.)

5. Find G′ if G = S3. Prove that S3 is solvable. (HINT: A3.)
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6. Prove that Sn is not solvable for all n ≥ 5. (What do you think about
S4?)

8.2 Double cosets

We turn now to another important decomposition of an arbitrary group G
into disjoint complexes. Such decompositions will play an important role in
our later considerations of the Sylow Theorems.

Let G be an arbitrary group and let H1 and H2 be subgroups of G. For
a, b ∈ G, we define

a ∼ b if and only if h1ah2 = b (8.3)

where h1 ∈ H1 and h2 ∈ H2. We contend first of all that the relation given
in (8.3) is an equivalence relation on G. To see this, we note

1. (Reflexivity): a ∼ a since eae = a, where e is the identity element and
e ∈ H1 and e ∈ H2 since H1 ≤ G, H2 ≤ G.

2. (Symmetry): a ∼ b implies there exist h1 ∈ H1 and h2 ∈ H2 such
that h1ah2 = b, but then a = h−1

1 bh−1
2 , so b ∼ a since h−1

1 ∈ H1 and
h−1

2 ∈ H2.

3. (Transitivity): If a ∼ b and b ∼ c, then there exist elements h1, h
′
1 ∈ H1

and h2, h
′
2 ∈ H2 such that

h1ah2 = b and h′1ah
′
2 = c,

whence
h′1h1ah

′
2h2 = c.

Since h1h
′
1 ∈ H1 and h2h

′
2 ∈ H2, we have that a ∼ c.

Thus ∼ given by (8.3) is indeed an equivalence relation on G. We next
take a look at the equivalence classes.

Definition 8.2.1. Let G be a group with subgroups H1 and H2 (not neces-
sarily distinct). If a ∈ G, the complex H1aH2 is called a double coset with
respect to H1 and H2. By definition,

H1aH2 = {h1ah2 ∈ G | h1 ∈ H1, h2 ∈ H2}.
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For a ∈ G, the equivalence class [a] of a as we recall, contains all b ∈ G
with b ∼ a. By the definition given in (8.3), this means b = h1ah2, where
h1 ∈ H1 and h2 ∈ H2. Thus b ∈ H1aH2. As the above statements are all “if
and only if”, we see that [a] = H1aH2, the double coset given in Definition
8.2.1. By our general theorem on equivalence relations, Theorem 1.1.4, we
know that either

H1aH2 = H1bH2 or H1aH2 ∩H1bH2 = ∅
and

G =
∐

a

H1aH2

where the union is taken over certain a ∈ G. The identity element e belongs
to the complex H1H2.

If H2 = {e}, then we simply get the right coset decomposition of G with
respect to H1. If H1 = {e}, then we have the left coset decomposition of G
with respect to H2. Thus the double coset decomposition of a group may
be viewed as a generalization of the coset (right or left) decomposition of
a group. However, the reader should be careful not to generalize all facts
related to coset decompositions to the case of double coset decompositions.
For example, we saw that any two cosets of a finite group have the same
number of elements. We shall presently see that this is not the case with
double cosets.

Let us consider the double coset H1aH2. Clearly H1aH2 contains all right
cosets of the form H1ah2, where h2 ∈ H2 and H1aH2 contains all left cosets
of the form h1aH2 where h1 ∈ H1. We claim, as a matter of fact, that H1aH2

is a union of right or left cosets of the above form. For suppose that

gH2 ∩H1aH2 6= ∅.
Then there exist elements h2, h

′
2 ∈ H2 and h1 ∈ H1 such that

gh′2 = h1ah2

or g = h1ah2(h
′
2)

−1. This implies that

gH2 = h1aH2,

and so gH2 ⊂ H1aH2. Since this shows that any left coset which has anything
at all in common with H1aH2, must be totally contained in H1aH2, we have

H1aH2 = ∪h1
h1aH2. (8.4)
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Similarly, it can be shown that

H1aH2 = ∪h2
H1ah2. (8.5)

Next, we wish to ascertain the number of left and right cosets in the
double coset. Even though this number can be finite for an infinite double
coset, we assume |G| <∞. This is contained in

Theorem 8.2.2. Let G be a finite group, let H1 ≤ G, H2 ≤ G, and let
a ∈ G. Then

(a) The number of right cosets of H1 in H1aH2 is [H2 : H2 ∩ a−1H1a].

(b) The number of left cosets of H2 in H1aH2 is [a−1H1a : H2 ∩ a−1H1a].

Proof: We first note that a−1H1a is a subgroup by Proposition 7.2.1.
Consider the mapping of the double cosetH1aH2 onto the complex a−1H1aH2

given by h1ah2 7−→ a−1h1ah2. It is easy to show that this map is well-defined,
1-1, and onto (see exercise 2 for this section). Thus |H1aH2| = |a−1H1aH2|.
But a−1H1aH2 is the product of two subgroups a−1H1a and H2 so by the
product theorem (Theorem 4.3.6),

|a−1H1a ·H2| =
|a−1H1a||H2|
|a−1H1a ∩H2|

.

Now according to (8.4), the number of left cosets ofH2 inH1aH2 is |H1aH2|/|H2|.
Thus the number of left cosets of H2 in H1aH2 is

|a−1H1a|
|a−1H1a ∩H2|

= [a−1H1a : a−1H1a ·H2].

This establishes part (b) of the theorem. A similar argument establishes part
(a) (this is left as an exercise). �

Under the same hypotheses as in Theorem 8.2.2, we use the notation
#(H1aH2) to be the number of right cosets of H1 in H1aH2 times |H1| (note
from (8.5) that #(H1aH2) = |H1aH2|). Thus Theorem 8.2.2 implies that

#(H1aH2) =
|H2|

|a−1H1a ∩H2|
· |H1|.

This proves the following result.
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Corollary 8.2.3. Let G be a finite group and let H1 ≤ G, H2 ≤ G. If
G =

∐

aH1aH2 (disjoint), then

|G| =
n

∑

j=1

|H1||H2|
dj

(8.6)

where dj = |a−1
j H1aj ∩H2|.

8.2.1 Exercises

1. If H1 ≤ G, H2 ≤ G, G a group, and a ∈ G. Show that the double coset
H1aH2 is such that

H1aH2 = ∩h2
H1ah2

where h2 ranges over certain elements of H2.

2. Let H1 ≤ G, H2 ≤ G, G a group, and a ∈ G. Let φ : H1aH2 →
a−1H1aH2 be defined by φ(h1ah2) = a−1h1ah2, where h1 ∈ H1 and
h2 ∈ H2. Show φ is well-defined, 1-1, and onto.

3. Following the proof of part (b) of Theorem 8.2.2, prove part (a), i.e.,
the number of right cosets of H1 in H1aH2 is [H2 : H2 ∩ a−1H1a].

4. Find the double coset decomposition of S3 with respect to H1 = H2 =
{(1), (1, 2)}.

5. Let G be a finite group and H ≤ G such that NG(H) = N(H) = H ,
and any two distinct conjugate subgroups of H have only the identity
element in common. Let N be the set of elements of G not contained
in H nor in any of its conjugates, together with the identity. Show that
|H| | (|N | − 1).

HINT: First use the given together with Lagrange’s Theorem (in particular

equation (4.8)) and Theorem 6.1.1 to show that |N | = [G : H]. Next de-

compose G into double cosets with respect to N(H) and H and use equation

(8.6). Now the identity e ∈ G belongs to some double coset, so we may

assume that a1 = e, in the line before equation (8.6). Finally this implies

that in (8.6) d1 = |H|, but all the other dj = 1. (Why?) Use the resulting

relation to get the desired result.
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8.3 Isomorphism theorems

Let G1 and G2 be two groups and let f : G1 → G2 be a homomorphism of
G1 onto G2. Furthermore, let K = Ker(f). If H1 ≤ G1, then (see Theorem
7.1.4) f [H1] ≤ G2. If H2 ≤ G2 then it is readily seen thatH = f−1[H2] ≤ G1:
For if h1, h2 ∈ H , then

f(h1h
−1
2 ) = f(g1)f(h2)

−1 ∈ H2,

so h1h
−1
2 ∈ H (see Chapter 2, exercise 2). Now since e2 ∈ H2, where e2

designates the identity of G2, we have K = f−1(e2) ⊂ H = f−1(H2) and so
f(H) = H2, since f is onto and also using exercise 6(b) from Section 1.1. We
therefore have shown that any subgroup H2 of G2 is of the form

H2 = f(H), (8.7)

where H ≤ G satisfies the condition that Ker(f) ⊂ H .
Finally let H be any subgroup of G1 that contains the kernel, K. Then,

of course,
H ⊂ H1 = f−1[f [H ]].

(See exercise 6(a) of Section 1.1, where an equality is given if f is 1-1, but the
above inclusion holds for any f . Why?) However since f is a homomorphism,
we can show equality. For if h1 ∈ H1, then f(h1) ∈ f [H ], so f(h1) = f(h),
where h ∈ H . Thus h1 = hk, where k ∈ K (note f(h−1h1) = e2), but
K ⊂ H ; whence h1 ∈ H , and we have

f−1[f [H ]] = H. (8.8)

With these results at our disposal, we are now in a position to prove the
following result.

Theorem 8.3.1. (Correspondence Theorem) Let f : G1 → G2 be a homo-
morphism of the group G1 onto the group G2 with K = Ker(f). Let {Hα}α∈Λ

be the class of all subgroups of G1 which contain K. The mapping (or corre-
spondence)

Φ : Hα → f [Hα]

is a 1-1 correspondence between the family {Hα}α∈Λ and the class of all sub-
groups of G2. Moreover, Hα ⊳G1 if and only if f(Hα) = f [Hα] ⊳G2.
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Remark 8.3.2. The condition that f is onto in this theorem is really no
restriction because if f : G1 → G2 is not onto, we just replace G2 with f [G1].

Proof: Part of the theorem has already been established in our remarks
preceding the theorem. In particular, we have noted that the mapping Φ
defined in the statement of the theorem is onto (see (8.7); i.e., Φ is the
mapping of the family {Hα}α∈Λ to the family of all subgroups of G2 given by

Φ(Hα) = f [Hα].

We also note that each subgroup H is such that K = Ker(f) ⊂ Hα, for
all α ∈ Λ. It is also clear that Φ is 1-1, for suppose Φ(Hα) = Φ(Hβ), then
f [Hα] = f [Hβ]. But from the remarks preceding the theorem in particular
equation (8.8), we get

Hα = f−1[f [Hα]] = f−1[f [Hβ]] = Hβ.

Thus Φ is 1-1.
Finally, if Hα ⊂ G1 then since f is onto, for arbitrary g2 ∈ G2 there exists

a g1 ∈ G1 such that g2 = f(g1). Thus

g2f [Hα]g−1
2 = f(g1)f [Hα]f(g1)

−1 = f [g1Hαg
−1
1 ] = f [Hα],

and so f [Hα] ⊂ G2. Conversely, if f [Hα] ⊂ G2, consider , where g1 ∈ G1.
Then

f [g1Hαg
−1
1 ] = f(g1)f [Hα]f(g1)

−1 = f [Hα].

But then Φ(g1Hαg
−1
1 ) = f [g1Hαg

−1
1 ] = f [Hα] = Φ(Hα) and since Φ is 1-1, we

have g1Hαg
−1
1 = Hα and so g1Hαg

−1
1 ⊳G1. We note that g1Hαg

−1
1 is actually

also one of the subgroups of G1, which contains K because K is normal in
G1; for K ⊂ Hα implies K = g1Kg

−1
1 ⊂ g1Hαg

−1
1 . �

We apply Theorem 8.3.1 to the particular case of the canonical homomor-
phism (see Example 7.1.2) κ of a group G onto a factor group G/N , where
N is, of course, a normal subgroup of G; i.e., κ : G → G/N . We claim
Ker(κ) = N . Indeed, recall the identity in G/N is N , so that Ker(κ) =
{x ∈ G | κ(x) = N} = {x ∈ G | xN = N} = {x ∈ G | x ∈ N} = N , as
claimed. Thus, by Theorem 8.3.1, any subgroup of G/N is of the form κ[H ]
where H ≤ G and N ⊂ H . However,

κ[H ] = {hN | h ∈ H} = H/N. (8.9)

We have, therefore established the following result.
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Corollary 8.3.3. Let G be a group and let N ⊳G. Any subgroup of G/N is
of the form H/N where H is a subgroup of G containing N . If H1 and H2 are
two such subgroups of G, then H1 6= H2 implies H1/N 6= H2/N . Moreover
H ⊳G if and only if H/N ⊳G/N .

We continue to assume f : G1 → G2 is a homomorphism of the group G1

onto G2 with kernel K. Let H be a normal subgroup of G that contains K
and let H2 = f [H ]. Consider the mappings

G1
f→ G2

κ→ G2/H2,

where κ is the canonical map of G2 onto G2/H2. Note H2 ⊳G2, by Theorem
8.3.1, since H ⊳G1.

The composite map
κf : G1 → G2/H2

is, of course, a homomorphism of G1 onto G2/H2. Suppose a ∈ G1 and
κf(a) = H2, i.e., suppose a ∈ Ker(κf). Then f(a) ∈ H2 and conversely.
Hence, the Ker(κf) is (by equation (8.8)). Applying the FHT (Theorem
7.1.8), we have G2/H2

∼= G1/H , where the isomorphism of G1/H onto G2/H2

is given by aH 7−→ κf(a) = f(a)H2. We summarize this in the following
theorem, frequently called the first isomorphism theorem.

Theorem 8.3.4. (First Isomorphism Theorem) Let f : G1 → G2 be a homo-
morphism of the group G1 onto the group G2 with Ker(f) = K. Let H ⊳G1

such that K ⊂ H. Then f [H ] ⊳G2, and

G1/H ∼= f [G1]/f [H ],

by the mapping aH 7−→ f(a)f [H ].

Again, we consider the special case of a group G and the canonical map
κ onto a factor group G/N . If H ⊳G and N ⊂ H , then

κ[H ] = H2 = H/N,

by equation (8.9). Thus Theorem 8.3.4 gives the following result.

Corollary 8.3.5. Let G be a group and let H and N be normal subgroups
of G such that N ⊂ H. Then

G/H ∼= (G/N)/(H/N).
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Now assume that H1 and H2 are subgroups of a group G, and moreover
that H2 ⊳ G. Then, in particular, h1H2 = H2h1 for all h1 ∈ H1, and so
clearly H1H2 = H2H1. This implies by Theorem 4.2.1, that H1H2 ≤ G. As
we will have occasion to use this fact in the future, we state it here as the
following result.

Proposition 8.3.6. If H1 ≤ G, H2 ≤ G and H2 ⊳G, then H1H2 ≤ G.

(Of course H2 ⊂ H1H2 and since H2 ⊳ G, we have H2 ≤ H1H2.) Next
consider the mapping

φ : H1 → H1H2/H2

given by φ(h1) = h1H2, where h1 ∈ H1. This map is a homomorphism of
H1 into H1H2/H2 (see exercise 1 for this section). We claim tht φ is, in
addition, onto H1H2/H2. Indeed, for any coset of H2 in H1H2 is of the form
h1h2H2 = h1H2, where h1 ∈ H1 and h2 ∈ H2. The kernel, Ker(φ), consists of
those h1 ∈ H1 such that φ(h1) = h1H2 = H2, i.e., those elements of H1 ∩H2

or Ker(φ) = H1 ∩H2. Thus applying the FHT (Theorem 7.1.8) to φ yields
the second fundamental isomorphism theorem.

Theorem 8.3.7. (Second Isomorphism Theorem) If H1 and H2 are sub-
groups of a group G and H2 is also normal in G, then H1 ∩H2 ⊳H1 and

H1H2/H2
∼= H1/H1 ∩H2.

The isomorphism is given by the mapping h1(H1 ∩H2) ∼= h1H2, where h1 ∈
H1.

The second isomorphism theorem can probably best be remembered by
the following mnemonic device:
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H1 ∩H2

H1 H2

H1H2
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Label the vertices of the figure as indicated, it being immaterial which side
are writes H1 or H2 on. One then reads the isomorphism by reading “mod-
ulo the opposite sides.” Should H1 also be normal in G, then we obtain,
symmetrically, H1H2/H1

∼= H2/(H1 ∩ H2), which may be read by reading
“modulo” the other pair of opposite sides of the figure.

There is another fundamental theorem of isomorphism (the third isomor-
phism theorem) due to Zassenhaus, but we postpone a consideration of this
theorem until we reach the section to which it is most relevant.

8.3.1 Exercises

1. Prove that if H1 ≤ G, H2 ≤ G, G a group, with H2 ⊳G then the map
φ given by φ(h1) = H1H2, for h1 ∈ H1 is a homomorphism from H1

into H1H2/H2.

2. If N ⊳G, G a finite group, and if [G : N ] and |N | are relatively prime,
then show that N contains every subgroup of G whose order is a divisor
of |N |.
(HINT: Let H ≤ G such that |H| | |N |. Let h ∈ H and consider o(h) and

o(gN), for gN an element of G/N . Use this to prove h ∈ N .)
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3. Let G be a group, H a subgroup of G, let C be a class of conjugate
elements, and let h ∈ H be fixed. Prove: |Ha ∩ C| = |Hah ∩ C|.
(HINT: Define a map and prove it is 1-1 and onto.)

4. Let H1 ≤ G, H2 ≤ G, G a group, such that H2 ⊳ H1; also let H be
any subgroup of G. Let H3 = H2 ∩ H and H4 = H1 ∩ H . Prove the
following statements.

(a) H3 ⊳H4.

(b) H4/H3 is isomorphic to a subgroup of H1/H2. (HINT: Use the

second isomorphism theorem “appropriately”.



Chapter 9

Direct Products

In this chapter, we shall consider a process of constructing a new group from
a finite number of given groups. Actually, the process (the external direct
product) can be extended to the case where an infinite number of groups
are given, but we shall not go into these matters here. At the same time,
we shall consider the intimately related situation of decomposing a given
group in a certain fashion (the internal direct product) into a product (with
the usual meaning) of a finite number of subgroups. We shall investigate
the relationship between this situation (internal direct product) and the first
(external direct product) of our considerations. We shall see that up to an
isomorphism the two concepts of direct product are indistinguishable. In the
second section, we shall consider applications of this construction.

9.1 External and internal direct product

We proceed now to a precise consideration of the matters described above.

Definition 9.1.1. Let G1, G2, ..., Gn be a finite collection of groups. We
form the set G = G1 × G2 × ... × Gn, the cartesian product of the sets G1,
G2, ..., Gn. Thus G consists of all n-tuples of the form (a1, a2, ..., an), where
ai ∈ Gi, i = 1, 2, ..., n. We introduce an operation which will make G into a
group; viz, for any two n-tuple of G, we define

(a1, a2, ..., an)(b1, b2, ..., bn) = (a1b1, a2b2, ..., anbn).

The group G so constructed is called the (external) direct product of the
given groups. We denote this by G1 ×G2 × ...×Gn (external).

101
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It is understood that each product aibi is performed with the operation
of Gi. It is now a straight-forward matter to show that, for this operation,
the associative law is satisfied. Also the element (e1, e2, ..., en), where ei is
the identity element of Gi, functions as the identity element of G. Finally,
the inverse of the element (a1, a2, ..., an) is the element (a−1

1 , a21
−1, ..., an1−1)

Hence G is a group with respect to the given operation. It is also clear that
the following is true.

Proposition 9.1.2. Let G = G1 ×G2 × ...×Gn.
(a) If each Gi is finite and |Gi| = ri, then

|G| =

n
∏

i=1

ri.

(b) If each Gi is abelian, then G is abelian.

Now we consider the following situation; which will subsequently be
shown to be related.

Definition 9.1.3. Let G be a given group and let G1, G2, ..., Gn be normal
subgroups of G such that

G = G1G2...Gn

(usual product of sets in a group) and Gi ∩ G1...Gi−1Gi+1...Gn = {e}, for
every i = 1, 2, ..., n. In this situation, we say that G is decomposed into the
(internal) direct product of the subgroups G1, G2, ..., Gn, and we shall
write G = G1 ×G2 × ...×Gn (internal).

For the time being, we shall write in parenthesis after an expression of
the form G1 × G2 × ... × Gn either “external” or “internal” to distinguish
which of the two situations defined above actually prevails. After we have
seen the inter-connection between these two concepts, it will be clear that
we can drop this accompanying label without fear of confusion.

Our first theorem related to direct products is concerned with the lat-
ter situation, i.e., where G is the internal direct product of its subgroups,
G1, G2, ..., Gn. We have

Theorem 9.1.4. G = G1 ×G2 × ...×Gn (internal) if and only if
(1) aiaj = ajai for any ai ∈ Gi and any aj ∈ Gj where i 6= j, and
(2) Every element of G can be written uniquely in the form a1a2...an where

ai ∈ Gi.
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Proof: Suppose first thatG = G1×G2×...×Gn (internal), and let ai ∈ Gi

and aj ∈ Gj where i 6= j. Then the commutator [ai, aj] = aiaja
−1
i a−1

j ∈ Gj

since aiaja
−1
i ∈ Gj (since Gj ⊳ G), and aj ∈ Gj. However, a−1

i ∈ Gi and
ajaia

−1
j ∈ Gi (since Gi ⊳ G). Therefore [ai, aj] ∈ Gi, but Gi ∩ Gj = {e}

(WHY?). Hence
[ai, aj] = aiaja

−1
i a−1

j = e,

which implies that aiaj = ajai and proves part (1). Next sinceG = G1G2...Gn,
any a ∈ G can be written in the form a = a1a2...an where ai ∈ Gi. If also
a = b1b2...bn where bi ∈ Gi, then

a = a1a2...an = b1b2...bn

and using the commutativity of elements in different Gi’s, we get

bia
−1
i = b−1

1 a1...b
−1
i−1ai−1b

−1
i+1ai+1...b

−1
n an.

This in turn implies, since G is the internal direct product of the Gi, that
bia

−1
i = e, or that bi = ai. But this can be done for every i = 1, 2, ..., n. This

establishes part (2).
Conversely suppose that (1) and (2) hold. We claim each Gi ⊳G. Indeed,

for if gi ∈ Gi and a = a1a2...an, aj ∈ Gj is an arbitrary element of G, then

agia
−1 = a1a2...angia

−1
n ...a−1

2 a−1
1 = aigia

−1
i

since, by (1), aj commutes with gi for all j > i and aj commutes with gi for
all j < i. From (2), we have that G = G1G2...Gn. Finally we note that a
typical element of G1...Gi−1Gi+1...Gn is of the form a1a2...ai−1ai+1...an, where
aj ∈ Gj. Suppose such an element is also in Gi and, hence, is equal to some
ai ∈ Gi:

ai = a1a2...ai−1ai+1...an,

or
e...eaie...e = a1a2...ai−1eai+1...an,

where e is the identity of G. By the uniqueness part of (2), we now have
ai = e, so

Gi ∩G1...Gi−1Gi+1...Gn = {e}.
We now proceed to establish two theorems which will show that, in the future,
we need not distinguish between internal and external direct products.
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Theorem 9.1.5. Let G = G1 × G2 × ... × Gn (internal) and let Gi
∼= Hi,

i = 1, 2, ..., n. Form H = H1 ×H2 × ...×Hn (external); then G ∼= H.

Proof: Let fiHi → Gi be an isomorphism of Hi onto Gi. We now define
a mapping

f : H → G,

by
f((a1, a2, ..., an)) = f1(a1)f2(a2)...fn(an).

We claim that f is an isomorphism of H onto G.
First we observe that f is onto G: For any element g in G, we know is of

the form g = b1b2...bn, where bi ∈ Gi. Therefore, since each fi is onto, there
exist ai ∈ Gi so that bi = f(ai), and so

g = b1b2...bn = f(a1)f(a2)...f(an) = f(a1, a2, ..., an),

where (a1, a2, ..., an) ∈ H . (We note that here we have dropped the double
parentheses around the n-tuple.) Thus f is onto G.

Second, we note that f is a homomorphism, i.e., f preserves the group
operation. For

f((a1, a2, ..., an)(b1, b2, ..., bn)) = f((a1b1, a2b2, ..., anbn)) = f(a1b1)f(a2b2)...f(anbn).

Since each fi is a homomorphism, this is

= f(a1)f(b1)f(a2)f(b2)...f(an)f(bn) = (f(a1)f(a2)...f(an))(f(b1)f(b2)...f(bn)),

since elements from different factors of an internal direct product commute
from Theorem 9.1.4 (1). Finally, we have from the definition of f that the
above is equal to

f(a1, a2, ..., an)f(b1, b2, ..., bn).

Lastly, to prove our claim, we must show that f is 1-1. To see this,
suppose that f(a1, a2, ..., an) = e, i.e., (a1, a2, ...an) ∈ Ker(f). Then ee...e =
f1(a1)f2(a2)...fn(an), which by the uniqueness of representation, Theorem
9.1.5, implies that fi(ai) = e, for all i, 1 ≤ i ≤ n. Since each fi is 1-1,
Theorem 7.1.6 implies that ai = ei for all i, 1 ≤ i ≤ n, where ei is the
identity of Hi. Therefore (a1, a2, ..., an) = (e1, e2, ..., en) is the identity of H ,
i.e., Ker(f) is trivial. Thus Theorem 7.1.6 implies that f is 1-1, which proves
our claim (that f is an isomorphism). �

We note, in particular, taking Hi = Gi, i = 1, 2, ..., n, in Theorem 9.1.5
that if G = G1×G2× ...×Gn (internal), then forming H = G1×G2× ...×Gn

(external) gives a group isomorphic to G.
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Theorem 9.1.6. Let G = G1 × G2 × ... × Gn (external); also let Hi =
{(e1, ..., ei−1, ai, ei+1, ..., en) | ai ∈ Gi}, for i = 1, 2, ..., n. Then the Hi ⊳ G
and G = H1 ×H2 × ...×Hn (internal), and Hi

∼= Gi, i = 1, 2, ..., n.

Proof: Clearly each Hi ≤ G (Why?) and the mapping Gi → Hi given by
ai 7−→ (e1, ..., ei−1, ai, ei+1, ..., en) is also clearly an isomorphism of Gi onto
Hi. Moreover,

(b1, b2, ..., bn)(e1, ..., ei−1, ai, ei+1, ..., en)(b−1
1 , b−1

2 , ..., b−1
n )

= (e1, ..., ei−1, biaib
−1
i , ei+1, ..., en)

which shows Hi ⊳ G. Now let (a1, a2, ..., an) be an arbitrary element of G,
we can write this in the form

(a1, a2, ..., an) = a′1a
′
2...a

′
n,

where a′i = (e1, ..., ei−1, ai, ei+1, ..., en) ∈ Hi. Hence G = H1H2...Hn. Finally
any element of H1...Hi−1Hi+1...Hn is of the form (a1, ..., ai−1, ei, ai+1, ..., an),
where aj ∈ Hj . Thus it follows immediately that

Hi ∩ (H1...Hi−1Hi+1...Hn) = {e},

i = 1, ..., n, where e = (e1, ..., en) is the identity of G. The result now follows
from the definition of the internal direct product. �

From now on, we drop writing in parentheses after an expression G1 ×
G2 × ... × Gn either “external” or “internal”. It should be clear from the
context what is meant.

9.1.1 Exercises

1. Verify that the “componentwise” multiplication given in Definition
9.1.1 is actually a binary operation on G1 × G2 × ... × Gn (external).
Also verify that this binary operation is associative.

2. Prove Proposition 9.1.2.

3. Verify the first two statements in the proof of Theorem 9.1.6; i.e.,

(1) H1 ≤ G,

(2) the map ai 7−→ (e1, ..., ei−1, ai, ei+1, ..., en) is an isomorphism of Gi

onto Hi.
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4. Let H1 ⊳ G, H2 ⊳ G be such that the canonical homomorphism G →
G/H2 when restricted to H1 gives an isomorphism of H1 onto G/H2.
Then prove G = H1 ×H2 (internal).

5. Let G be an abelian group and H ≤ G such that G/H is an infinite
cyclic group. Then prove that G ∼= H × G/H . (HINT: Use exercise 4
above.)

9.2 Applications and further properties

We wish to show, for our first application, that a cyclic group of order n can
be written as a direct product of cyclic groups of prime power order.

Theorem 9.2.1. If G is a cyclic group of order n =
∏k

i=1 p
αi

i , where the pi

are distinct primes and αi ≥ 1 are integers, then G is a direct product of
cyclic groups of orders pαi

i , i = 1, 2, ..., k.

Proof: We designate by Gi the unique cyclic subgroup of order pαi

i of
G (see Theorem 5.2.1) and let H = G1G2...Gk. H is, of course a subgroup,
since the Gi commute, because G is cyclic (and thus, of course, abelian). Also
Gi ⊂ H for every i = 1, 2, ..., k; therefore pαi

i | |H|, for every i = 1, 2, ..., k.
Thus n = lcm(pαi

i ) (see Theorem 1.2.11, generalized from 2 factors to k
factors) and so n| |H|. Since H ≤ G, |H| |G| = n and so n = |H|. This
proves G = H = G1G2...Gk.

Next, we designate by Hi the cyclic subgroup of G of order ni = n/pαi

i ,
i = 1, 2, ..., k, and let Wi = Hi ∩Gi. Then Wi ≤ Hi and also Wi ≤ Gi. Thus
|Wi| |ni and Wi|pαi

i , but gcd(ni, p
αi

i ) = 1, so |Wi| = 1. Hence Wi = Hi ∩Gi =
{e}. However, pαi

i | |Hi| for all j 6= i. Thus Gj ⊂ Hi for j 6= i since Hi,
being cyclic, contains a subgroup of order p

αj

j and that subgroup must be
Gj ≤ Hi ≤ G by uniqueness (see Theorem 5.2.1), so G1...Gi−1Gi+1...Gk ⊂ Hi

and therefore
(G1...Gi−1Gi+1...Gk) ∩Gi = {e},

for all i = 1, 2, ..., k. �

We next prove an important property of direct products.

Theorem 9.2.2. If G = G1 ×G2, then G2
∼= G/G1 and G1

∼= G/G2.

Proof: The theorem is an immediate consequence of the second isomor-
phism theorem (Theorem 8.3.7). Namely, we have
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G1 ∩G2 = {e}

G1 G2

G = G1 ×G2 = G1G2
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and since G1 and G2 are both normal in G, Theorem 8.3.7 gives G/G1
∼=

G2/{e} ∼= G2 and G/G2
∼= G1. �

We have already seen one instance (Theorem 8.1.5) in which a normal
subgroup N1 of a normal subgroup N2 of a group G is normal in G, i.e.,
N1⊳N2, N2⊳G, and N1⊳G. The following theorem gives another important
case in which this true.

Theorem 9.2.3. If H is a direct factor of the group G (i.e., G = H × N ,
for some N ≤ G), then every normal subgroup of H is normal in G.

Proof: Let W ⊳ H . Now by hypothesis, G = H × N . Thus if g is an
arbitrary element of G, then we can write g in the form g = hn, where h ∈ H
and n ∈ N . Now

gWg−1 = (hn)Wn−1h−1 = hWh−1 = W,

where we have used the fact that elements ofH andN commute (see Theorem
9.1.4). Since g was an arbitrary element of G, we see indeed that W ⊳G. �

We continue with another application of direct products to cyclic groups.

Theorem 9.2.4. Let Cm and Cn be cyclic groups of orders m and n, respec-
tively. G = Cm × Cn is cyclic if and only if gcd(m,n) = 1.
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Proof: Suppose gcd(m,n) > 1. We shall show that G is not cyclic. Let
p be a prime such that p| | gcd(m,n), so p|m and p|n. Thus Cm has a cyclic
subgroup of order p and Cn has also a cyclic subgroup of order p (see Theorem
5.2.1), but Cm∩Cn = {e}. Consequently, G has at least two cyclic subgroups
of order p. This implies, by Theorem 5.2.1, that G is not cyclic.

Next suppose that gcd(m,n) = 1 and let Cm = 〈a〉 and Cn = 〈b〉. Then
ab ∈ G = Cm × Cn and o(ab) = mn, for if we let t = o(ab), then

(ab)mn = amnbmn = e

so t|mn. Since

e = (ab)mt = amtbmt = bmt,

so n|mt. But gcd(m,n) = 1, so n|t. Similarly, we can show that m|t and,
again, since gcd(m,n) = 1, we must have lcm(m,n) = mn|t. Thus mn =
t = o(ab). However, |G| = mn so G = 〈ab〉. �

As our last application, we prove that the Euler φ-function is multiplica-
tive, i.e., if gcd(m,n) = 1, then φ(mn) = φ(m)φ(n). Suppose Cm is a cyclic
group of order m, and Cn is a cyclic group of order n, where gcd(m,n) = 1.
Then Cm × Cn = Cmn, is a cyclic group of order mn by Theorem 9.2.4. We
know from our discussion of cyclic groups in Chapter 5 (in particular see
Corollary 5.2.3) that Cm has φ(m) generators and that Cn has φ(n) gen-
erators. While Cmn has φ(mn) generators. However, it is easy to see (see
exercise 2 for this section) that every generator of Cmn must be of the form
(a, b) where a is a generator of Cm and b is a generator of Cn. Thus we have
proven the following result.

Theorem 9.2.5. If m,n ∈ N and gcd(m,n) = 1, then φ(mn) = φ(m)φ(n).
In other words, φ is multiplicative.

9.2.1 Exercises

1. In the proof of Theorem 9.2.4, we showed n|t. Show m|t (where these
letters have the meaning given there).

2. Let Cm be a cyclic group of order m and Cn be a cyclic group of order
n where gcd(m,n) = 1. Prove that the generators of Cmn = Cm × Cn

are precisely all elements of the form (a, b), where a is a generator of
Cm and b is a generator of Cn. (HINT: Theorem 1.2.11.)
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3. Let G be a finite abelian group of order n =
∏k

i=1 p
αi

i , where the pi are
distinct primes. Prove that G = G1 × G2 × ... × Gk, where Gi is the
subgroup of G consisting of all elements whose order divides .

HINT: Mimic the proof of Theorem 9.2.1.
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Chapter 10

The Sylow Theorems

We have already observed (see statements after the proof of Theorem 6.2;
also see Exercise 4 for Section 6.2) that the converse of Lagrange’s theorem
is false, i.e., if G is a finite group of order n and if d|n, then G need not
contain a subgroup of order d. If d is a prime p or a power of a prime pe,
however, then we shall see that G must contain subgroups of that order. In
particular, we shall see that if pd is the highest power of p that divides n,
than all subgroups of that order are actually conjugate, and we shall finally
get a formula concerning the number of such subgroups. These theorems
constitute the Sylow Theorems which, along with a few applications, will be
the matter of concern of this chapter.

10.1 Existence of Sylow subgroups; the first

Sylow Theorem

Definition 10.1.1. Let G be a finite group with |G| = n and let p be a prime
such that pa|n but no higher power of p divides n. A subgroup of G of order
pa is called a p-Sylow subgroup.

It is not at all obvious that a p-Sylow subgroup exists. It is our main
concern in this section to show that for each p|n that a p-Sylow subgroup
exists. Note that P is a p-Sylow subgroup of G if and only if G = prn where
p 6 |n and |P | = pr.

We first consider and prove a very special case of the end result we wish
to obtain.

111
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Theorem 10.1.2. Let G be a finite abelian group and let p be a prime such
that p| | |G|. Then G contains at least one element of order p.

Proof: The proof will proceed by induction on |G|. If |G| = p, a prime,
then the theorem is clearly true. Thus suppose |G| = n, where n is composite
and also suppose that the theorem has been proven for all groups whose order
< n. Suppose p is a prime such that p|n. We need to show that G has an
element of order p. We claim G contains a subgroup not equal to {e} or to
G itself. This is clear if G is cyclic (see Theorem 5.2.1). If G is not cyclic,
let a ∈ G, a 6= e, the identity element of G. Then 〈a〉 is a proper subgroup
of G. (Why?) Let H be a proper subgroup of G of maximal order. If p| |H|,
then since |H| < |G|, we have by the induction hypothesis that there exists
an h ∈ H such that o(h) = p, but clearly h ∈ G, also. This proves our
claim when p| |H|. If, however, p 6 ||H|, then since H is a proper subgroup of
G, there exists an element a ∈ G − H . Let K be the cyclic subgroup of G
generated by a, i.e., K = 〈a〉. Now the product HK is a subgroup of G (by
Theorem 4.2.1) since G is abelian. Also, H ⊂ HK properly, i.e., H 6= HK,
because a ∈ HK but a ∈ H . However, H was a maximal proper subgroup.
Thus it must be that HK = G. Then, by Theorem 4.3.6,

|G| =
|H||K|
|H ∩K| =

|H| · o(a)
d

,

where d = |H ∩ 〈a〉. Thus

d|G| = |H| · o(a),

and since p| |G|, we must have that p| |H|o(a). However, we have assumed
p 6 ||H , thus by the Corollary 1.2.10 we have p|o(a). Let o(a) = m. Then
m = pk, where k ∈ N, and consider the element ak. By Theorem 5.2.2,

o(ak) =
m

gcd(m, k)
= m/k = p.

�

Thus if G is an abelian group and if p|n, then G contains a subgroup of
order p; viz., the cyclic subgroup of order p generated by an element a ∈ G
of order p whose existence is guaranteed by Theorem 10.1.2.

We now proceed to the main result of this section, i.e., the first Sylow
Theorem.
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Theorem 10.1.3. (Sylow I) Let G be a finite group and let p ∈ G, then G
contains a p-Sylow subgroup (i.e., a p-Sylow subgroup exists).

Proof: As in the preceding theorem, the proof will be given by induction
on |G|. The theorem is clearly true if |G| = 2. Now let |G| = n = pan′,
where p 6 |n′. By hypothesis, a > 0. We next decompose G into conjugacy
classes according to the discussion at the beginning of Section 4.1 and use
the class equation, i.e., equation (4.8), to obtain

G = Z(G) ∪ Cl(a1) ∪ Cl(a2) ∪ ... ∪ Cl(at) (disjoint) (10.1)

where Cl(ai) designates a conjugacy class. Since the union is disjoint, we
can write

n = |Z(G)| + k1 + k2 + ...+ kt,

where kj = |Cl(aj)|. By Theorem 4.3.4, kj = [G : CG(aj)] = n/nj , where
nj = CG(aj). We return now to equation (10.1) and recall that the conjugacy
classes, Cl(aj), listed (if there are any) are nontrivial, i.e., each kj > 1. Let us
suppose that some kj is such that p 6 |kj, i.e., gcd(kj, p) = 1. Since njkj = n,
we must have nj < n. Moreover, pa|nj since p 6 |kj. It follows by the induction
hypothesis that the subgroup CG(aj) contains a p-Sylow subgroup and that
therefore G contains a p-Sylow subgroup. Thus, in this case, the theorem
has been established.

We may, thus, assume that for each j, j = 1, 2, ..., t, p|kj. Thus

pan′ = |Z(G)| + pr,

whence p| |Z(G)|. Since Z(G) is an abelian group, we have by the preceding
theorem that Z(G), and therefore, G has an element, a, of order p. Now
〈a〉 ⊳ G since a ∈ Z(G) and |〈a〉| = p. Hence |G/〈a〉| = pa−1n′, and so
by the induction hypothesis G/〈a〉 must contain a p-Sylow subgroup of order
pa−1. This p-Sylow subgroup must be of the form P/〈a〉, where P ≤ G which
contains 〈a〉 by the Corollary 8.3.3. Now

|P | = |P 〈a〉| · |〈a〉|pa−1 · p = pa,

and so P is a p-Sylow subgroup of G. �

On the basis of this theorem, we can now strengthen the result obtained
in Theorem 10.1.2.
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Theorem 10.1.4. (Cauchy) If G is a finite group and if p is a prime such
that p| |G|, then G contains at least one element of order p.

Proof: Let P be a p-Sylow subgroup of G, and let P = pa. If e 6= a ∈ P ,
then o(a)| |P | implies o(a) = pb, where 0 < b ≤ a. But then the cyclic group,
〈a〉, must have a (unique) subgroup of order p, say 〈at〉, by Theorem 5.2.1.
Thus at ∈ G and o(at) = p. �

10.1.1 Exercises

1. Let G be a finite group and let p| |G|. Suppose P is a p-Sylow subgroup
of G. Prove that any conjugate of P , gPg−1, is also a p-Sylow subgroup
of G.

2. Let G be a finite group and N ⊳G such that |N | is a power of a prime
p. Prove that N is contained in every p-Sylow subgroup of G. (HINT:

Use Theorems 4.3.6 and Proposition 8.3.6.)

3. Let G be a finite group and P be a p-Sylow subgroup of G. Prove that
if x ∈ NG(P ) and o(x) is a power of p, then x ∈ P . (HINT: Same as

for exercise 2.)

4. Let G be a finite group and P be a p-Sylow subgroup of G. Prove that
P is the only p-Sylow subgroup of G contained in NG(P ). (HINT:

Use exercise 3.)

10.2 The second and third Sylow Theorems

We have seen that p-Sylow subgroup’s exist. We now wish to show that
any two p-Sylow subgroup’s are conjugate. This is the content of the second
Sylow Theorem.

Theorem 10.2.1. (Sylow II) Let G be a finite group and p a prime such
that p| |G|. Then all p-Sylow subgroup’s of G are conjugate. In other words,
if P1 and P2 are any two p-Sylow subgroups of G then there exists an a ∈ G
such that P1 = aP2a

−1.
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Proof: Let P1 and P2 be two p-Sylow subgroup’s of G, where |P1| =
|P2| = pa. We now decompose G into double cosets with respect to P1 and
P2 (see Section 8.2). Thus

G = P1a1P2 ∪ P1a2P2 ∪ ... ∪ P1atP2 (disjoint)

and from equation (8.6)

|G| =
t

∑

j=1

|P1||P2|
dj

,

where dj = |P2 ∩ a−1
j P1aj |. Hence if |G| = pan′, where p 6 |n′′, we have

pan′ =
papa

d1
+ ...+

papa

dt
,

or

n′ =
pa

d1

+ ... +
pa

dt

. (10.2)

Now P2 ∩ a−1
j P1aj ≤ P2, therefore dj|pa, so dj = pb, where 0 < b ≤ a. Thus

each term on the right hand side of (10.2) is either 1 or a power of p. Since
p 6 |n′, it follows that at least one term on the right hand side of (10.2) must
equal 1, say the kth term. This means dk = pa so |P2 ∩ a−1

k P1ak| = pa.
Whence P2 = P2 ∩ a−1

k P1ak ⊂ a−1
k P1ak. Since both P2 and a−1

k P1ak have
the same (finite) order and since one is contained in the other, they must
be equal: P2 = a−1

k P1ak. Hence the two p-Sylow subgroup’s P1 and P2 are
conjugate. �

We come now to the last of the three Sylow theorems. This one gives
us information concerning the number of p-Sylow subgroup’s. Let np(G)
designate the number of p-Sylow subgroup’s of G

Theorem 10.2.2. (Sylow III) Let G be a finite group and p a prime such
that p| |G|. We have

np(G) ≡ 1(mod p),

i.e., np(G) is of the form 1 + pv where v ∈ Z. (We may write np instead of
np(G) if it is clear which group G we are working in.)

Proof: Let P be a p-Sylow subgroup of G. Then by the second Sylow
Theorem (Theorem 10.2.1) and by Theorem 6.1.1,

np(G) = [G : NG(P )] =
|G|
n
,
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where n = |NG(P )|. (From now on we drop the subscript G and just write
N(P ) and also just write np.) Now P ⊂ N(P ) and P ⊳ N(P ); |P | |n, i.e.,
pa|n, where pa = |P |, so

n = pan′, where gcd(n, p) = 1,

since P is a p-Sylow subgroup of G and N(P ) ≤ G. We now decompose G
into double cosets with respect to P and N(P ). Thus

G = Pa1N(P ) ∪ Pa2N(P ) ∪ ... ∪ PatN(P ), (disjoint),

and using the numerical relation (8.6) yields

|G| =
pan

d1

+ ...+
pan

dt

, (10.3)

where dj = |N(P ) ∩ a−1
j Paj|. Now the identity, e, of G belongs to some

double coset, and we may assume that, say a1 = e. In this case, we have

Pa1N(P ) = PeN(P ) = PN(P ) = N(P ),

hence, the first term on the right hand side of (10.3) becomes pan
d1

= n. Now
cancelling n on both sides of (10.3) and recalling that |G| = n[G : N(P )] =
n · np, gives

np = 1 +
pa

d2
+ ... +

pa

dt
. (10.4)

Next we observe that N(P ) ∩ a−1
j Paj ⊂ a−1

j Paj and since |a−1
j Paj| = pa,

we must have pa

dj
= pbj , where 0 ≤ bj ≤ a and j = 2, ..., t. If we can show

that each such bj > 0, (2 ≤ j ≤ t), then it will follow from (10.4) that np is
indeed, of the form 1 + pv. Hence suppose on the contrary that for some j,
say j = s (2 ≤ s ≤ t), that pa = ds. But

N(P ) ∩ a−1
s Pas ⊂ a−1

s Pas

and
|N(P ) ∩ a−1

s Pas| = ds = pa,

so N(P ) ∩ a−1
s Pas = a−1

s Pas. But also N(P ) ∩ a−1
s Pas ⊂ N(P ). Thus both

P and a−1
s Pas are p-Sylow subgroup’s of N(P ). Hence by the second Sylow

Theorem (Theorem 10.2.1, with N(P ) now playing the role of G in that
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theorem), they must be conjugate in N(P ). But P ⊳N(P ), so we must have
that a−1

s Pas = P . This means as ∈ N(P ), which implies that

PasN(P ) = PN(P ) = N(P ),

which contradicts the disjointness of the decomposition. Hence for j = 2, ..., t
every bj > 0 and this as already observed, completes the proof. �

The third Sylow Theorem tells us that np(G), the number of p-Sylow
subgroup’s, is of the form 1+pv. However, we know as was used in the proof
that np(G) = [G : NG(P )] from Theorem 6.1.1. Thus np(G)| |G|. This proves
the following fact.

Corollary 10.2.3. Same hypothesis as in Theorem 10.2.2. Then np(G)| |G|.

As pointed out above this is really a corollary of the proof of the third
Sylow Theorem. The two facts that np(G) ≡ 1(mod p) and np(G)| |G| are
extremely useful. A few of their applications will be seen in the examples of
the next section.

For the final theorems of this section, we turn our attention to prime
power groups.

Theorem 10.2.4. Let G be a group of order pn. Then G contains at least
one normal subgroup of order pm, for each m such that 0 ≤ m ≤ n.

Proof: The theorem is trivial for n = 1. We claim it is also true for
n = 2. Indeed, by Theorem 6.3.4, any group of order p2 is abelian. This
together with Theorem 10.1.2 establishes the claim.

We proceed now by induction on n. Thus we assume the theorem is true
for all groups G of order pk where 1 ≤ k < n, where n > 2. Let G be a group
of order pn. Also let N be a normal subgroup of order p. N exists since Z(G)
is non-trivial (by Theorem 4.3.5) and is, of course, abelian. Thus again by
Theorem 10.1.2, Z(G) contains an element, say z, of order p. We can take
N = 〈z〉 and so N is a normal subgroup of G of order p, since every subgroup
of the center is normal in G (WHY?). But then G/N is of order pn−1, and
therefore, contains (by the induction hypothesis) normal subgroups of orders
pm−1, for 0 ≤ m − 1 ≤ n − 1. These groups are of the form H/N , where
H ⊳ G contains N (see the Corollary 8.3.3) and is of order pm, 1 ≤ m ≤ n,
because |H| = |N |[H : N ] = |N | · |N/H|. �

We next introduce the concept of a p-group which generalizes the idea of
groups of prime power order.
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Definition 10.2.5. A p-group G (where p is any prime) is a group in which
the order of every element is some power of p.

We observe that a p-group does not even have to be finite. But in the
finite case, we have the following result.

Theorem 10.2.6. G is a finite p-group if and only if |G| = pn for some
n ∈ N.

Proof: We leave the “if” part as an exercise, i.e., if |G| = pn, then G is
a p-group. (See exercise 1 for this section.) Conversely, suppose that G is a
finite p-group. We would like to show that |G| = pn. If there were a prime
q 6= p such that q| |G|, then by Cauchy’s Theorem (Theorem 10.1.4) G would
contain at least one element of order q. This contradicts the fact that every
element of G has order a power of p, i.e., that G is a p-group. Thus |G| = pn.
�

10.2.1 Exercises

1. Prove that if |G| = pn, for some n ∈ N, and p a prime, then G is a
p-group.

2. Let G be a finite group. Prove that any H ≤ G such thatH is a p-group
(Note from Theorem 10.2.6 H is a prime power group, i.e., |H| = pn.)
is contained in at least one p-Sylow subgroup (p-Sylow subgroup are
maximal p-subgroups in this sense).

(HINT: Use a double coset decomposition similar to the arguments used in

the proofs of the second and third Sylow Theorems, but this time decompose

G with respect to H and a p-Sylow subgroup.)

3. Let G be a finite group.

(a) Show that every subgroup H of G which contains the normalizer of
a p-Sylow subgroup is its own normalizer.

(HINT: Suppose NG(P ) ⊂ H, where P is a p-Sylow subgroup. Now P is a

p-Sylow subgroup of H (Why?). Let x ∈ N(H). We need to show x ∈ H

to be finished (Why?). Note first that xPx−1 is also in p-Sylow subgroup of

H (Why?). Now use the second Sylow Theorem applied to the above Sylow

subgroups of H. From this and the fact that NG(P ) ⊂ H establish the desired

result.)
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(b) Use (a) to show that if P is a p-Sylow subgroup then N(N(P )) =
N(P ).

4. Show that if a group has 1 + p Sylow subgroups of order pa, then any
2 of these subgroups have just pa−1 elements in common.

(HINT: Suppose P1 and P2 are any 2 p-Sylow subgroup’s. Use an argument

with double cosets decomposing the group G into double cosets with respect to

P1 and NG(P2) like the argument given for the third Sylow Theorem 10.2.2.

Finally, use the second Sylow theorem 10.2.1)

5. Show that if a group G has 1 + p Sylow subgroups of order pa, then G
contains pa+1 elements whose orders are divisors of pa.

(HINT: Use the result of exercise 4 above. Also you may assume that any

two of the p-Sylow subgroup’s of G intersect in the same subgroup of G.)

10.3 Applications

On the basis of the first Sylow Theorem, Theorem 10.1.3, and Theorem
10.2.4, we see that if G is a finite group and if pk| |G|, then G must contain
a subgroup of order pk. One can actually show that, as in the case of Sylow
p-groups, the number of such subgroups is of the form 1 + pt, but we shall
not prove this here.

We shall now consider a number of applications of the Sylow Theorems.

Example 10.3.1. There is no simple group of order 84. Write 84 = 22 ·3 ·7.
If the 7-Sylow subgroup is not normal, then it has 1 + 7v conjugates where
v ≥ 1 and (1 + 7v)|22 · 3 · 7. Clearly 1 + 7v 6= 7n, so the only possibilities are

1 + 7v = 2, 22, 3, 2 · 3, 22 · 3,

all of which are clearly impossible (none of these are ≡ 1(mod 7)). Hence
the 7-Sylow subgroup is normal and therefore, any group of order 84 is not
simple.

Example 10.3.2. There is no simple group of order 12. Write 12 = 223. If
the 3-Sylow subgroup, which is a cyclic group of order 3, C3, is not normal,
it has 1 + 3v conjugates where v ≥ 1 and (1 + 3v)|12. Clearly the only
possibility is v = 1, in which case C3 has 4 conjugates. These groups have
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only the identity in common, and this accounts for 4 · (3 − 1) = 8 nontrivial
elements of G. This leaves then 4 elements of G, which must constitute a
2-Sylow subgroup of order 4, which of course only has the identity in common
with any 3-Sylow subgroup. Thus this 2-Sylow subgroup must be normal since
it can have no distinct conjugate. If the reader goes back to the table for A4

given in Section 6.1, it will be seen that exactly this situation prevails.

Example 10.3.3. There is only one group of order 15 (up to isomorphism)
the cyclic group. Let |G| = 15. It is clear that both the 5-Sylow subgroup,
C5, and the 3-Sylow subgroup, C3, are normal (Why?). Since C5 is cyclic of
order 5 and C3 is cyclic of order 3, C3 ∩ C5 = {e} and G = C3C5 since by
Theorem 4.3.6, |C3C5| = 15. Hence G = C3 × C5 = C15, a cyclic group of
order 15 by Theorem 9.2.4.

Further applications along these lines are given in the exercises for this
section. Deeper structural applications of the Sylow Theorems can be found
in the more advanced literature on group theory (see for example [Sc]).

Theorem 10.3.4. Any finite abelian group G is a direct product of its Sylow
subgroups.

Proof: Let |G| =
∏n

i=1 p
ai

i , where the pi are distinct primes and ai ∈ N.
Let Pi be the pi-Sylow subgroup. Pi is unique by Theorem 10.2.1 (the second
Sylow Theorem) and by the fact that G is abelian. Of course each Pi ⊳G and
|Pi| = pai

i . Since Pi ⊂ P1P2...Pn (i = 1, 2, ..., n), we have that |P1P2...Pn| is
divisible by pai

i , and therefore G = P1...Pn. Repeated application of Theorem
4.3.6 shows |P1P2| = pa1

1 p
a2

2 , |P1P2P3| = pa1

1 p
a2

2 p
a3

3 , etc. from which it forms
immediately that

Pi ∩ P1...Pi−1Pi+1...Pn = {e},
since the groups being intersected have coprime orders. �

Thus any finite abelian group is a direct product of its p-Sylow subgroup’s.
There are other finite groups, other than abelian groups, which are the direct
products of their Sylow subgroups; such finite groups are called nilpotent.
The notion of a nilpotent group can be extended to infinite groups by a
consideration of various sequences of subgroups in such a way that for finite
groups the notion reduces to the above characterization. However, we shall
not go into these matters here.

Suppose finally that G is a finite group and that G is the direct product
of its Sylow subgroups, say |G| =

∏n
i=1 p

ai

i , and G = P1 × P2 × ... × Pn,
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where Pi is the pi-Sylow subgroup of G. Let d| |G|, then d =
∏n

i=1 p
bi

i , where
0 ≤ bi ≤ ai and 1 ≤ i ≤ n (WHY?). Since Pi is a pi-group of order pai

i , it must
contain a normal subgroupNi of order pbi

i by Theorem 10.2.4 for every such bi.
Moreover, every such Ni must actually be normal in G by Theorem 9.2.3. Let
N = N1N2...Nn. Then N is a subgroup of G since each Ni ⊳G (by repeated
application of Proposition 8.3.6). Also Ni∩ (N1...Ni−1Ni+1...Nn) = {e} since
Pi ∩ (P1...Pi−1Pi+1...Pn) = {e}. (WHY is this true for the P ’s?) and every
Ni ⊂ Pi. Thus

N = N1 ×N2 × ...×Nn

and |N | =
∏n

i=1 p
bi

i = d. Therefore we have proven that G possesses a
subgroup of order d where d was any positive divisor of |G|. As a matter of
fact, N is even a normal subgroup of G (WHY?). Specializing to the case of
an abelian group, which we know by Theorem 10.3.4 is a direct product of
its Sylow subgroups, we obtain the converse of Lagrange’s Theorem for such
groups.

Theorem 10.3.5. If G is a finite abelian group of order n, then for each
d|n, G has a subgroup of order d.

10.3.1 Exercises

1. Prove that there is no simple group of order 204.

2. Prove that there is no simple group of order 18.

3. Let G be a finite group such that |G| = pq, where p and q are distinct
primes such that p 6 |(q−1) and q 6 |(p−1). Then prove that G is cyclic.

small (HINT: Mimic the proof given in the text that any group of order
15 is cyclic.)

4. Find all the 3- and 2-Sylow subgroup’s for A4.

(HINT: The table for A4 given in Section 6.1 may be helpful. Also recall

something about V4 in A4.)

5. In the text, it was shown that if G is a finite abelian group of order n,
then for each d > 0 such that d|n, G has a subgroup of order d. Does
this imply that G has an element of order d? WHY or WHY NOT?

(HINT: Z2 × Z2 × Z2.)
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Chapter 11

Solvable Groups and the
Jordan-Hölder Theorem

We have previously defined the notion of a solvable group in Section 8.1
(Definition 8.1.6). This was done in terms of a sequence of subgroups of the
group G, viz., the commutator subgroups. In this chapter, we shall give an
alternate characterization of solvable groups again in terms of sequences of
subgroups. We shall be concerned, in particular, with two types of sequences
of subgroups: a normal series and a composition series, and the notion of
when two such sequences are equivalent, which will lead to the Jordan-Hölder
Theorem. These notions will all be made precise in this chapter. We recall as
was observed in the introduction to Chapter 8 that the concept of a solvable
group is intimately related to the solvability of a polynomial equation by
radicals.

11.1 The third isomorphism theorem

In Section 8.3, we considered (Theorems 8.3.4 and 8.3.7) the first and second
isomorphism theorems. We come now to what is frequently called the third
isomorphism theorem, the proof of which is due to Zassenhaus.

Theorem 11.1.1. (Third Isomorphism Theorem) Let G be a group with
subgroups G1, G2, H1, and H2. Let H1 ⊳ G1 and H2 ⊳ G2. Then (G1 ∩
H2)H1 ⊳ (G1 ∩G2)H1 and (G2 ∩H1)H2 ⊳ (G1 ∩G2)H2. Moreover,

(G1 ∩G2)H1/(G1 ∩H2)H1
∼= (G1 ∩G2)H2/(G2 ∩H1)H2.

123
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Proof: We first note that G1 ∩G2, G1 ∩H2, and H1 are all subgroups of
G1. Also by hypothesis, H1 ⊳ G1. Thus by Proposition 8.1.3, (G1 ∩ G2)H1

and (G1 ∩H2)H1 are subgroups of G1. We next claim that

(G1 ∩H2)H1 ⊳ (G1 ∩G2)H1.

To see this let a ∈ G1∩G2, b ∈ G1∩H2, and c, d ∈ H1. Then aba−1 ∈ G1∩H2,
since a, b ∈ G1. But now aba−1 ∈ G1 and b ∈ H2 and a ∈ G2, which implies
that aba−1 ∈ H2 since H2 ⊳G2. Also aca−1 ∈ H1, since a ∈ G1, c ∈ H1, and
H1 ⊳ G1. Since a typical element of (G1 ∩ H2)H1 is of the form bc, where
b ∈ G1 ∩H2 and c ∈ H1, we therefore get that

a(G1 ∩H2)H1a
−1 ⊂ (G1 ∩H2)H1 (11.1)

where a ∈ G1 ∩G2. Moreover, using the same notation as above,

dbd−1 = d(bd−1b−1)b.

Bbut bd−1b−1 ∈ H1, since d ∈ H1, b ∈ G1, and H1 ⊳G1, so

dbd−1 ∈ H1(G1 ∩H2).

This implies

d(G1 ∩H2)H1d
−1 = d(G1 ∩H2)d

−1dH1d
−1, (11.2)

where we have used the fact that H1(G1 ∩H2) = (G1 ∩H2)H1 (which is true
sinceH1⊳G1, by Proposition 8.3.6). Recall the typical element of (G1∩G2)H1

is of the form ad where a ∈ G1 ∩ G2 and d ∈ H1. According to Proposition
6.1.4, this, (11.1) and ((11.2) together imply (G1 ∩ H2)H1 ⊳ (G1 ∩ G2)H1.
This proves the claim above.

On the basis of the second isomorphism (Theorem 8.3.7), we have
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(G1 ∩G2) ∩ (G1 ∩H2)H1

G1 ∩G2 (G1 ∩H2)H1

(G1 ∩G2)(G1 ∩H2)H1
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(note that (G1∩H2)H1⊳(G1∩G2)(G1∩H2)H2 since (G1∩H2)H1⊳(G1∩G2)H1

and (G1 ∩G2)(G1 ∩H2)H1 = (G1 ∩G2)H1. Now since (G1 ∩H2)H1 ⊳ (G1 ∩
G2)(G1 ∩H2)H1, (G1 ∩G2) ∩ (G1 ∩H2)H1 ⊳G1 ∩G2, and

(G1∩G2)/((G1∩G2)∩(G1∩H2)H1) ∼= ((G1∩G2)H1)/((G1∩H2)H1). (11.3)

However, we contend that

(G1 ∩G2)(G1 ∩H2)H1 = (G1 ∩H2)H1 ∩G2. (11.4)

For clearly
(G1 ∩G2)(G1 ∩H2)H1 ⊂ (G1 ∩H2)H1 ∩G2.

While if w ∈ (G1∩H2)H1∩G2, then w ∈ G2 and w = xy, where x ∈ G1∩H2

and y ∈ H1 ⊂ G1. But then x ∈ G1 and y ∈ G1, so w ∈ G1 ∩ G2, and we
then get the inclusion the other way. This proves (11.4).

Next we note that any element of (G1 ∩H2)H1 is of the form uv, where
u ∈ G1 ∩ H2 and v ∈ H1. If this element also belongs to G2, i.e., uv ∈ G2,
then

v = u−1(uv) ∈ G2;

hence v ∈ G2 ∩H1. Thus uv ∈ (G1 ∩H2)(G2 ∩H1). We have shown that

(G1 ∩H2)H1 ∩G2 ⊂ (G1 ∩H2)(G2 ∩H1)
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Since the reverse inclusion is clear, we have

(G1 ∩H2)H1 ∩G2 = (G1 ∩H2)(G2 ∩H1)

Combining this last result with (11.4) and (11.3) yields

(G1 ∩G2)/((H1 ∩G2)(G1 ∩H2)) ∼= ((G1 ∩G2)H1)/((G1 ∩H2)H1). (11.5)

However, by symmetry, i.e., replacing 1 by 2 and vice versa in (11.5) yields

(G1 ∩G2)/((H1 ∩G2)(G1 ∩H2)) ∼= ((G1 ∩G2)H2)/((G2 ∩H1)H2). (11.6)

and by (11.5) and (11.6), we finally have that

(G1 ∩G2)H1/(G1 ∩H2)H1
∼= (G1 ∩G2)H2/(G2 ∩H1)H2.

�

We note that the symmetry arguement used in the above proof to get
(11.6) could, of course, have been replaced by an argument similar to that
given in the first part of the proof. (See exercise 1 for this section.)

11.1.1 Exercises

1. Under the hypothesis of Theorem 11.1.1, use an argument similar to that
given in the proof of this theorem to first show that (H1∩G2)H2⊳(G1∩G2)H2

and then that equation (11.6) above holds.

11.2 Series of groups; solvable groups revis-

ited

We shall apply the third isomorphism theorem presently, but first we intro-
duce a special sequence of subgroups of a group (usually called series of
groups). This was alluded to in the introduction to this chapter. Let

{e} = Gt+1 ⊂ Gt ⊂ ... ⊂ G2 ⊂ G1 = G (11.7)

be a sequence of subgroups of the group G where each Gi+1 is normal in Gi

(but not necessarily in all of G). Such a sequence of subgroups is called a
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normal series for G. Associated with a normal series for a group G, is an
associated sequence of factors (or factor groups); viz

G1/G2, G2/G3, ..., Gt/Gt+1 = Gt.

We observe that a normal series always exists for an arbitrary group G.
We could, e.g., take the trivial normal series: {e} ⊂ G = G1. There is also
nothing unique about a normal series, e.g., the symmetric group S4 has the
following normal series, among others:

{e} ⊂ C2 ⊂ V4 ⊂ A4 ⊂ S4,
{e} ⊂ V4 ⊂ A4 ⊂ S4,
{e} ⊂ C2 ⊂ V4 ⊂ S4,

{e} ⊂ V4 ⊂ S4,
{e} ⊂ S4,

(11.8)

where V4 is the Klein 4-group (see Section 6.3), and, as usual, Cn denotes
a cyclic group of order n, here, e.g., take C2 = 〈(12)(34)〉. Note that all
terms in the fifth series given above for S4 occur in the fourth and all those
in the fourth occur in the third and those in the third occur in the first. A
similar situation prevails between the fifth, fourth, second, and first series.
This illustrates the following: one normal series is called a refinement of
another if all the terms of the second occur in the first series. Hence the
second series above is a refinement of the fourth series. The third series is
also a refinement of the fourth series. However, the second series is not a
refinement of the third series.

Finally, two normal series

{e} = Gs+1 ⊂ Gs ⊂ ... ⊂ G2 ⊂ G1 = G,
{e} = Ht+1 ⊂ Ht ⊂ ... ⊂ H2 ⊂ H1 = H,

(11.9)

are called equivalent or (isomorphic) if there exists a 1-1 correspondence
between the factors of the two series (thus s = t) such that the corresponding
factors are isomorphic.

Example 11.2.1. Consider the two series for Z15,

Z15 ⊃ 〈[5]〉 ⊃ {[0]},
Z15 ⊃ 〈[3]〉 ⊃ {[0]},
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where [5] denotes the residue class of 5 mod 15. These normal series are
equivalent: For Z15/〈[5]〉 ∼= Z5, 〈[5]〉/{[0]} ∼= Z3, while the factors of the
second series are Z15/〈[3]〉 ∼= Z3, 〈[3]〉/{[0]} ∼= Z5 (where [3] denotes the
residue class of 3 mod 15).

Our first general theorem in this spirit is the following important theorem
due to Schreier.

Theorem 11.2.2. (Schreier) Any two normal series for a group G have
equivalent refinements.

Proof: Consider two normal series for G as in (11.9). Define

Gij = (Gi ∩Hj)Gi+1, j = 1, 2, ..., t+ 1,
Hji = (Gi ∩Hj)Hj+1, i = 1, 2, ..., s+ 1.

Then we have

G = G11 ⊃ G12 ⊃ ... ⊃ G1,s+1 = G2

= G21 ⊃ ... ⊃ G2,s+1 = G3 ⊃ ... ⊃ Gt,s+1 = {e},
and

G = H11 ⊂ H12 ⊃ ... ⊃ H1,t+1 = H2

= H21 ⊃ ... ⊃ H2,t+1 = H3 ⊃ ... ⊃ Hs,t+1 = {e},
Now applying the third isomorphism theorem (Theorem 11.1.1) to the groups
Gi, Hj, Gi+1, Hj+1, we have that Gi,j+1 = (Gi ∩ Hj+1)Gi+1 ⊳ Gi,j = (Gi ∩
Hj)Gi+1 and Hj,i+1 = (Gi+1∩Hj)Hj+1 ⊳Hj,i = (Gi∩Hj)Hj+1. Furthermore,
also by Theorem 11.1.1,

Gij/Gi,j+1
∼= Hji/Hj,i+1.

Thus the above two are normal series which are refinements of the two given
series and they are equivalent. �

We shall, in the next section, apply Schreier’s Theorem 11.2.2 to obtain
the important theorem of Jordan-Hölder, but first we wish to give an alter-
nate characterization of solvable groups. Before doing this, we establish the
following useful theorem.

Theorem 11.2.3. If {e} = Gt+1 ⊂ Gt ⊂ ... ⊂ G2 ⊂ G1 = G is a normal
series for the group G and if H ≤ G, then

H = H ∩G1 ⊃ H ∩G2 ⊃ ... ⊃ H ∩Gt+1 = e

is a normal series for H. The factors of the normal series in (11.2.3) are
isomorphic to subgroups of the factors of the normal series for G.
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Proof: We apply the second isomorphism theorem (Theorem 8.3.7) to
the subgroups Gi+1 and H ∩Gi of the group Gi. Hence, we have

H ∩Gi+1

Gi+1 H ∩Gi

Gi+1(H ∩Gi)
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First note that since Gi+1⊳Gi, Gi+1(H∩Gi) is a subgroup of Gi, Proposition
8.3.6 implies Gi+1 ⊳Gi+1(H ∩Gi), and also H ∩Gi+1 ⊳H ∩Gi. Second note
that Gi+1 ∩ (H ∩Gi) = H ∩Gi+1 since Gi+1 ⊂ Gi and that is how we get the
group at the lower vertex of our diagram. Thus Theorem 8.3.7 yields that

H ∩Gi/H ∩Gi+1
∼= Gi+1(H ∩Gi)/Gi+1

∼= Gi/Gi+1.

�

We now make the following definition (cf. Definition 8.1.6).

Definition 11.2.4. A group G is said to be solvable if it has a normal
series all of whose factors are abelian groups.

Since we have already defined a solvable group in Section 8.1, we must
show that these two definitions are equivalent. Thus suppose that G is solv-
able according to Definition 8.1.6. Then

G ⊃ G′ ⊃ G′′ ⊃ ... ⊃ G(t) = {e},

where the superscripts designate the higher commutator subgroups (see Sec-
tion 8.1). This is, of course, a normal series (see comments at the beginning
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of Section 8.1 and Theorem 8.1.5) for G. Moreover, G(i)/G(i+1) is abelian by
Theorem 8.1.4. Hence G is solvable according to Definition 11.2.4 above.

Suppose now that G is solvable in the sense of Defintion 11.2.4. So that
G has a normal series as in (11.7), such that each factor Gi/Gi+1 is abelian.
In particular, G/G2 = G1/G2 is abelian. Thus by Theorem 8.1.4, G2 ⊃
G′

1 = G′. Since G2/G3 is abelian, we have, again by Theorem 8.1.4, that
G3 ⊃ G′

2 ⊃ (G′
1)

′ = G′′. Similarly,

G4 ⊃ G′
3 ⊃ (G′

2)
′ = G′′′

1 = G′′′.

Continuing in this fashion, we finally get that

{e} = Gs+1 ⊃ G(s).

Hence G(s) = {e}, and G is solvable according to our original definition.
Thus we are at liberty to use whichever characterization of solvabilty is

more convenient. In the following theorem, we arbitrarily use the characteri-
zation of solvability introduced in this section. We strongly advise the reader
to prove the theorem (see exercise 3 for this section) using the initial defini-
tion (Definition 8.1.6) without making use of the equivalent characterization
we have just established.

Theorem 11.2.5. Any subgroup and any factor group of a solvable group is
solvable.

Proof: Suppose G is solvable. Then G has a normal series (11.7), such
that Gi/Gi+1 is abelian. Let H ≤ G. Then form the series (11.2.3). By
Theorem 11.2.3, we thus get a normal series, and (H ∩Gi)/(H ∩Gi+1) is iso-
morphic to a subgroup of Gi/Gi+1 and is, therefore, abelian. This completes
the first part of the theorem.

Again let G be a solvable group and let (11.7) again denote a normal
series for G with abelian factors. It is easy to see that any refinement of the
series (11.7) also has abelian factors; e.g., suppose

G1 ⊃ G2 ⊃ H ⊃ G3 ⊃ ....

is a refinement of (11.7). Then H/G3 ⊂ G2/G3 and, hence, is abelian. Since
G2/H ∼= (G2/G3)/(H/G3), by Corollary 8.3.5, therefore, G2/H also abelian.
Now let N ⊳G. Consider the normal series

G ⊃ N ⊃ {e}. (11.10)
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By Schreier’s Theorem (Theroem 11.2.2), (11.7) and (11.10) have equivalent
refinements. Let

G ⊃ H1 ⊃ H2 ⊃ ... ⊃ Hn ⊃ N ⊃ ... ⊃ {e} (11.11)

be a refinement of (11.10) equivalent to a refinement of (11.7). By our preced-
ing observations, the factors of (11.11) are abelian. Since (Hi/N)/(Hi+1/N) ∼=
(Gi/Gi+1), by Corollary 8.3.5,

G/N ⊃ H1/N ⊃ H2/N ⊃ ... ⊃ Hn/N ⊃ N/N = {e}

is a normal series for G/N with abelian factors. �

Since An for n ≥ 5 was shown to be a simple group (see Theorem 6.3.2),

An ⊃ {e}

is the only normal series for An, when n ≥ 5. But An for n ≥ 5 is, of course,
non-abelian, hence is not a solvable group. Consequently, by the preceding
Theorem 11.2.5, Sn for n ≥ 5 is also not a solvable group.

11.2.1 Exercises

1. Prove that any finite p-group is solvable.

(HINT: Use Theorems 10.2.4 and 10.2.6)

2. Prove that if G is a group that has a normal subgroup N such that
both N and G/N are solvable, then G must be solvable.

(HINT: Construct the appropriate normal series for G using the assumed

ones for G/N and N . Also use the Corollary to Theorem 8.3.1 and the

Corollary 8.3.5.)

3. Use the original definition of solvability Definition 8.1.6) to establish
Theorem 11.2.5 directly.

(HINT: What is the image of the commutator subgroup under the canonical

hom?)
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11.3 The Jordan-Hölder Theorem

In order to state the main theorem of this section, we first need two defini-
tions.

Definition 11.3.1. Let G be a group with N⊳G. Then N is called maximal
in G if N ⊂ G properly (i.e., N 6= G) and there does not exist any normal
subgroup where the inclusions are all meant to be proper.

On the basis of Corollary 8.3.3 another way of characterizing a maximal
normal subgroup is as follows: N is a maximal normal subgroup of G if and
only if G/N is simple. (See the exercises below.)

We now state our last definition.

Definition 11.3.2. A composition series for a group G is a normal series
as in (11.7), where all the inclusions are proper and such that Gi+1 is maximal
in Gi (in other words, each factor is simple).

For example, in the case of the previously given normal series for S4 in
(11.8), only the first {e} ⊂ C2 ⊂ V4 ⊂ A4 ⊂ S4 is a composition series for
S4. A composition series for A4 would be: {e} ⊂ C2 ⊂ V4 ⊂ A4. Note that
A4 ⊃ V4 ⊃ {e} would not be a composition series for A4 (Why?). Unlike the
case of normal series, it is possible that an arbitrary group does not have a
composition series (see exercise 1 for this section) or even if it does have one
a subgroup of it may not have one. Of course, a finite group does have a
composition series.

We now consider the case in which a group, G, does have a composition
series, and we prove the following important theorem.

Theorem 11.3.3. (Jordan-Hölder): If a group G has a composition series,
then any two composition series are equivalent (i.e., the composition factors
are unique).

Proof: Suppose we are given two composition series. Applying Schreier’s
refinement theorem (Theorem 11.2.2), we get that the two composition series
have equivalent refinements. But the only refinement of a composition series
is one obtained by introducing repetitions. If in the 1-1 correspondnece
between the factors of these refinements, the paired factors equal to {e} are
disregarded (i.e., if we drop the repetitions), we get clearly that the original
composition series are equivalent. �
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It was mentioned in the introduction to Chapter 6 that the simple groups
are important because “they play a role in finite group theory somewhat
analogous to that of the primes in number theory.” In particular, an arbi-
trary finite group, G, can be broken down into simple components. These
uniquely determined simple components are, according to the Jordan-Hölder,
the factors of a composition series for G.

We close by giving an application of this theorem. In particular, we use
the Jordan-Hölder Theorem to prove the uniqueness part of the Fundamental
Theorem of Arithmetic. The Fundamental Theorem of Arithmetic states that
every positive integer not equal to a prime can be factored uniquely (up to
order) into a product of primes.

First, we claim that such a factorization exists. Indeed, suppose n is
composite (i.e., n > 1 and n is not a prime). Then an easy induction shows
that n has a prime divisor p and we can write n = pn1, where n1 is an integer
satisfying n1 < n. If n1 is prime, the claim holds. Otherwise, n1 has a prime
factor p1, and n1 = p1n2 where n2 < n1 is an integer. Continuing in this
fashion, we must come to an equation nj−1 = pj−1nj , where nj is a prime pj ,
since the sequence of decreasing positive integers

n > n1 > n2 > n3 > ...

cannot continue indefinitely. We now have that n = pp1p2...pj is a product
of primes. This proves the existence claim.

On the basis of the Jordan-Hölder Theorem, we can easily show the other
part of the Fundamental Theorem of Arithmetic, i.e., apart from order of the
factors, the representation of n as product of primes is unique. To do this
suppose that

n = p1p2...ps,

and

n = q1q2...qt

where the pi and qj are primes. Then denoting, as usual, by Ck the cyclic
group of order k, we have

Cn ⊃ Cp2...ps
⊃ Cp3...ps

⊃ ... ⊃ Cps
⊃ {e},

and

Cn ⊃ Cq2...qt
⊃ Cq3...qt

⊃ ... ⊃ Cqt
⊃ {e},
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as two composition series for Cn. But the Jordan-Hölder Theorem implies
these must be equivalent; hence we must have s = t and by suitably arranging
pi = qi, 1 ≤ i ≤ s. Thus we have established the unique factorization theorem
for positive integers as an application of the Jordan-Hölder Theroem.

11.3.1 Exercises

1. Prove that any infinite abelian group G does not have a composition
series.

(HINT: Suppose it does and come to a contradiction. Also use the result of

exercise 4 for Section 6.3.)

2. Prove that a finite group is solvable if and only if the factors of a
composition series are cyclic groups having prime orders.

3. Prove that if G is a group which has a composition series, then any
normal subgroup of G and any factor group of G also have composition
series with factors isomorphic to composition factors of G.

(HINT: Mimic the proof of Theorem 11.2.5.)

4. Prove that N is a maximal normal subgroup of G if and only if G/N
is simple.

5. Optional Problem Identify the last statement in this section. State
where it came from, what it means, and its significance.

KLATU BERADA NIKTO
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