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the dancing problem, we conjecture that the probability converges to % =~
e

0.606530659. Finally, we leave the interested reader with a few problems to explore.

1. Determine the probability that exactly k pairs of players will be selected as
first-round opponents in both draws, for 0 <k < 64; then calculate the expected
number of repeated pairs.

2. Find a non-recursive formula for the simple dancing problem probabilities, d,, .

1

E.
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3. Prove (or disprove) that lim, ,.d, o=
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Introduction To obtain one valid proof of a theorem is an achievement, but there
may be many different proofs of the same theorem. For example, there are said to be
over 370 of Pythagoras’s theorem. Once a result has been proved, the story seldom
ends. Instead the search begins for refined, reduced, or simplified proofs.

It is just as important to have a collection of different approaches to proving a given
result as it is to have a collection of different results that can be derived using a given
technique. An advantage of this attitude is that if one has already proved a result using
a certain technique, then a different method of proving the same result may
sometimes yield a generalization of the original result which may not be possible with
the original technique of proof. We illustrate this phenomenon by examining various
proofs of the fact that A, the alternating group on four symbols, has no subgroup of
order six.

Preliminaries One of the cornerstones of theory of finite groups is the following
theorem of the Italian mathematician J. L. Lagrange (1736—1813):
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LAGRANGE’S THEOREM. If G is a finite group with |G| = n and H is a subgroup of G
with |H|=d, then d is a divisor of n.

Lagrange stated the theorem for the special case where G was a subgroup of the
symmetric group S, which arose out of his study of the permutations of the roots of a
polynomial equation. The theorem as stated above was probably first proved by Galois
[9] around 1830.

Is the converse true?

CONVERSE TO LAGRANGE’S THEOREM. If G is a finite group with |G|=n, and d is a
divisor of n, then G has a subgroup of order d.

It is well known that this converse is false, and that a counterexample of smallest
order is provided by A,, the alternating group on 4 symbols. This group of order 12
has no subgroup of order 6. We write A, as the group of all even permutations on the
four symbols {1, 2, 3, 4}.

A, = {e, (12)(34), (13)(24), (14)(23), (123), (132),

(124),(142), (134), (143), (234), (243)}

We now present eleven elementary proofs of the fact that A, has no subgroup of
order 6. Several attempts [2,4, 6] at presenting the “simplest” or “best” proof of
showing that A, has no subgroup of index 2 have recently been made. Since notions
like “best” or “simplest” proof are subjective, we present a range of possible
candidates. All eleven proofs involve only elementary concepts from group theory:
cosets, element orders, conjugacy classes, normality, isornorphism classes, commutator
subgroup, cycle structure. The variety of topics that arise is a valuable review of basic
group theory!

Proofs of the falsity of the converse Let H be an alleged subgroup of A, of
order 6. Each proof following implies that such an H cannot exist. Of course, the

most simple-minded approach is to look at all (162 ) = 924 subsets of A, and show that

none of them forms a subgroup. However, as Proof 1 illustrates, this number can be
halved immediately.

Proof 1. (Basic but crude)

H must contain the identity element e, so H has five nonidentity elements. There
1) _ 11-10-9-8-7
5 12345
check that none of these 462 subsets is closed under composition of cycles. This is an
arduous task to undertake by hand but quite feasible for a computer where the Cayley
table for A, has been entered. Paradoxically, this crude approach forms the basis of a
later proof which we nominate as the “simplest” but not “easiest” proof of the
converse.

are ( = 462 possible subsets to consider. We leave it for the reader to

Proof 2. (Using cosets)

Since H has index 2 we have A, =H U Ha for all a € A,\ H. Consider Ha”; now
Ha®>=H or Ha®>=Ha. If Ha®>=Ha, then Ha=H by cancellation and a €H, a
contradiction. Thus Ha? = H; but Hh*=H for all h € H and so Hg®>=H for all
g€A,. Thus g>?€H for all g€ A,. By direct calculation A, has nine distinct
squares, so |H|> 9, contradicting |H|= 6.
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Proof 3. [4] (A variation of Proof 2)
1

As in Proof 2 we have g?€H for all g€A,. If a®=e then a*=a"", so
a®*€H=a"'€H=a€H. But this would mean that H contains all eight elements
of order 3 in A,, which is a contradiction.

Proof 4. (Using normality)

A subgroup of index 2 is also a normal subgroup. Hence H < A, and the factor
group A,/H is a cyclic group of order 2. Thus H = (Hg)* = Hg* for all g€ A,, so
g? € H. We finish the proof using the same argument as in Proof 2.

Proofs 2, 3, and 4 display the characteristic that was mentioned in the introduction;
they generalize easily to yield the following result.

THEOREM. Let G be a finite group of even order and suppose that more than half
the elements of G have odd order. Then G has no subgroup H of index 2.

This result implies that the direct product A, X C,, where C, is the cyclic group of
odd order, has no subgroup of index 2. Thus there exists a counterexample to the
converse of Lagrange’s theorem of order 12n for each odd integer n.

Proof 5. (Using conjugacy classes)
The conjugacy classes of A, are

{e}.{(12)(34), (13)(24), (14)(23)},{(123), (124), (134), (234)},
{(132),(142), (143), (243)}

with cardinalities 1, 3, 4, and 4 respectively. Since H has index 2, H is a normal
subgroup of A, and so H must consist of complete conjugacy classes, one of which
must be {e}. But it is clearly not possible to make up the 5 remaining elements with
sets of size 3 and 4. Hence H does not exist.

Proof 6. (Using isomorphism classes)

Since |H| = 6, H must be isomorphic to one of the following groups; S, the group
of all permutations on 3 symbols {a, b, ¢} or Cg the cyclic group of order 6. Since A,
clearly has no element of order 6 the latter possibility is ruled out. Hence H = Sj.
Now S, has exactly three elements of order 2, namely X = {(ab), (bc), (ac)} and A,
(and hence H) has exactly three elements of order 2, given by Y =
{(12)(34), (13)(24), (14X23)}. The isomorphism, which preserves the order of an ele-
ment, must map Y onto X. But the elements of ¥ commute pairwise whereas no two
distinct elements of X commute. This contradicts a property of isomorphisms and
hence these groups cannot be isomorphic. We conclude that H does not exist.

Proof 7. (Variation on Proof 6)

H = S, implies that H contains the three elements of A, of order 2, and therefore
H contains V = {e, (12)(34), (13)(24), (14)(23)}. But V is a group of order 4 and 4 does
not divide 6, contradicting Lagrange’s theorem.

Proof 8. (Using the commutator subgroup)

Since H is a subgroup of index 2, H < A, and the factor group A,/H is an abelian
group of order 2. Thus H D A, where A, denotes the commutator subgroup. A little
computation shows that A, = {e, (12)(34), (13)(24), (14)(23)}. As in Proof 7, 4 does not
divide 6, again contradicting Lagrange’s theorem.

Proof 8 offers an easy alternative proof of the result of Mackiw [9] that the group
SL(2,3) (the group of all 2 X 2 invertible matrices of determinant 1 with entries in Z;)
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of order 24 has no subgroup of order 12. If K is such a subgroup, then K < SL(2,3)
and since the factor group SL(2,3)/K is abelian, K2 SL(2,3), the commutator
subgroup. But it is easy to see that |SL(2,3)| =8 and we get a contradiction since 8
does not divide 12.

Proof 9. (Using normal subgroups)

The group V = {e, (12)(34), (13)(24), (14)(23)} is a normal subgroup of A, as is the
subgroup H. Since HV contains V properly and V is a maximal subgroup we must
have HV = A,. By a well known result [9],

[HI||V| 19— 6x4
[HN V| |[HNV|’

Hence |H N'V|=2. But this is a contradiction since A, has no normal subgroup of
order 2, as is easily checked.

In the final two proofs all that is used is the closure property, i.e., if a,b € H then
abe H.

Proof 10. [1] (Using order of an element)

Since e € H there is space only for five remaining elements in H. The elements of
A, are either of order 2 or of order 3. Elements of order 3 occur in pairs and hence
we must have an even number of elements of order 3 in H. Since A, has eight
elements of order 3 and only three elements of order 2, H must contain at least one
element of order 3, and, because elements of order 3 come in pairs ( p and p?), there
are two possible cases to consider.

12=|A,|=|HV|=

Case 1. H contains four distinct elements of order 3, say p, w, p*, 0*.

In addition to the above four elements and the identity we would also get the
distinct elements pw and pw®. Note that pw # p, w, p* or w? since otherwise, by
cancellation we get that w=e, or p=e or p = w, all of which are false. Similarly the
element pw? is distinct from the six elements e, p, w, p?, %, pw. Hence |H|>7, a
contradiction.

Case I1. H contains exactly two elements of order 3, say p, p*
This would mean that H contains e and the 3 elements of order 2, which form a
subgroup of order 4, contradicting Lagrange’s theorem.

We contend that the final proof is possibly the most elementary of all the proofs in
that it utilizes only the closure property. It does involve a bit of computation but the
number of cases to check is far more manageable than in Proof 1.

Proof 11. Partition G into “packets” as follows {(e)}, {(12)(34)},

{A3)2DH(14)(23)}, {(123), (132)},{(124), (142)}, {(134), (143)}, {(234), (243)}. Note that

by closure, H must contain all the elements of a packet or no element of a packet.
Now e € H so H is made up of either

(i) three 1-packets and one 2-packet and e; or
(ii) one 1-packets and two 2-packets and e.

This gives (g) (‘11) +(‘I’) (;) =1-4+3-6 =22 sets to be checked for closure. In

each of the 22 sets, elements a and b can be found such that ab & H. Hence no such
H exists.

We remark that in several textbooks [3,5,7], the problem of disproving the
converse to Lagrange’s theorem is often relegated to an exercise. Sadly sometimes the
proof is dismissed with the words “It can be shown,” “As one can easily see,” “It will
be found.” Other texts offer proofs that involve complicated arguments [10]. We
invite readers to add to the above list of elementary proofs or variations of proofs.
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A Principle of Countability

ROBERT KANTROWITZ
Hamilton College
Clinton, NY 13323

Introductory courses in undergraduate analysis usually include a proof of the fact that
the rational numbers are countable. In a note appearing in 1986 [1], Campbell
presents an alternative to the usual diagonalization argument. Touhey’s proof in the
1996 article [4] proceeds along similar lines. In both of these papers, two sets are
declared to have the same cardinality if each can be mapped in a one-to-one manner
into the other. Most sources refer to this condition as the Cantor—Bernstein Theorem
[5, p. 103] or the Schroder—Bernstein Theorem [2, p. 99; 3, p. 74], a deeper result
that may not appear in an introductory analysis course.

In this note, I state a principle of countability and illustrate how it may be applied
both to argue the countability of some familiar sets and to prove two well-known
general results about countable sets. The main difference between the present
approach and that in [1] and [4] is that, here, countability is established without any
mention of Cantor/Schrder—Bernstein, but rather by appealing to the definition of,
and an elementary result about, countable sets. The function defined in establishing
the principle here is also slightly more general. The principle is likely part of the lore
of the subject of infinite sets, but it certainly deserves to be better known. It appears
in no textbook from which I have studied or taught. The underlying idea was shown to
me in graduate school by Professor John L. Troutman at Syracuse University.

A set S is called finite if, for some natural number n, there is a one-to-one, onto
function between S and the initial segment {1,2,..., n} of the set of natural numbers
N. If there is a one-to-one, onto function between S and the set N, then S is called
countably infinite. A set that is either finite or countably infinite is said to be
countable.

The main ingredients of the result that follows are a fixed, finite base set, called the
alphabet, the elements of which are called letters, and the words that may be formed
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